Attachment A: Flow Frequency Memo and Fact Sheets for 303(d) Waters

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office 4949-A Cox Road Glen Allen, Virginia 23060

SUBJECT: Flow Frequency Determination / 303(d) Status

Tyson Foods, Inc. - VA0004031

TO: Laura Galli

FROM: Jennifer Palmore, P.G.

DATE: January 28, 2014 **REVISED:** September 30, 2015

COPIES: File

The Tyson Foods, Inc. – Glen Allen facility discharges to an unnamed tributary of the Chickahominy River in Hanover County. The rivermiles are as follows:

Outfall 001: 2-XDD001.12 Outfall 002: 2-XDD000.95 Outfall 003: 2-XDD001.13

Flow frequencies have been requested for use in developing effluent limitations for the VPDES permit.

At the discharge points, the receiving stream is shown to be an intermittent stream on the USGS Glen Allen 7 ½' Quadrangle topographic map. The flow frequencies for intermittent tributaries are listed below:

Unnamed tributary at Outfalls 001, 002, and 003:

1Q30 = 0.0 MGD High Flow 1Q10 = 0.0 MGD 1Q10 = 0.0 MGD High Flow 7Q10 = 0.0 MGD 7Q10 = 0.0 MGD High Flow 30Q10 = 0.0 MGD

30Q10 = 0.0 MGD HM = 0.0 MGD

30Q5 = 0.0 MGD

Due to its intermittent nature, the receiving stream is considered a Tier 1 water. Effluent data should be used to characterize the stream during low flow conditions.

During the 2012 305(b)/303(d) Integrated Water Quality Assessment Report, the tributary below Tyson is considered a Category 5D water ("The Water Quality Standard is not attained where TMDLs for a pollutant(s) have been developed but one or more pollutants are still causing impairment requiring additional TMDL development.") The applicable fact sheets are attached. The stream was considered impaired of the Aquatic Life Use due to ammonia and pH exceedances, impaired benthic community, and low dissolved oxygen. The Wildlife Use was impaired due to the ammonia exceedances. The Fish Consumption Use was considered fully supporting with observed effects due to a VDH fish advisory for kepone, and the Recreation Use was not assessed.

In the draft 2014 Integrated Report, the stream is also considered Category 5A. The stream was considered impaired of the Aquatic Life Use due to ammonia and pH exceedances and an impaired benthic community. The Wildlife Use was impaired due to the ammonia exceedances. The Fish Consumption Use was considered fully supporting with observed effects due to a VDH fish advisory for kepone. The Recreation Use was not assessed.

Tyson was addressed in the report "Total Maximum Daily Load (TMDL) Development for the Unnamed Tributary to the Chickahominy River" which was approved by the EPA on 8/5/2004 and by the SWCB on 3/15/2005. The facility received a total phosphorus wasteload allocation of 409.35 lbs/year.

The Chickahominy River and Tributaries Bacterial TMDL was approved by the EPA on 9/19/2012 and by the SWCB on 3/25/2013. Tyson received an E. coli wasteload allocation of 2.18E+12 cfu/year.

The discharge was also addressed in the Chesapeake Bay TMDL, which was approved by the EPA on 12/29/2010. The TMDL allocates loads for total nitrogen, total phosphorus, and total suspended solids to protect the dissolved oxygen and submerged aquatic vegetation acreage criteria in the Chesapeake Bay and its tidal tributaries. Tyson Foods is considered a significant nutrient discharger and was included in the aggregated loads for significant wastewater dischargers in the Chickahominy River estuary (CHKOH). The nutrient allocations are administered through the Watershed Nutrient General Permit; the TSS allocations are considered aggregated and facilities with technology-based TSS limits are considered to be in conformance with the TMDL.

If you have any questions concerning this analysis, please let me know.

2014 Fact Sheets for 303(d) Waters

RIVER BASIN: James River Basin HYDROLOGIC UNIT: 02080206

STREAM NAME: Chickahominy River, UT - Unnamed Tributary

TMDL ID: G05R-01-BEN 2014 IMPAIRED AREA ID: VAP-G05R-01

ASSESSMENT CATEGORY: 4A TMDL DUE DATE: 2004

IMPAIRED SIZE: 1.17 - Miles Watershed: VAP-G05R

INITIAL LISTING: 1994

UPSTREAM LIMIT: Tyson Plant discharge

DOWNSTREAM LIMIT: Chickahominy River confluence

Segment consists of the unnamed tributary of the Chickahominy River to which the Tyson Plant discharges.

CLEAN WATER ACT GOAL AND USE SUPPORT:

Aquatic Life Use - Not Supporting

IMPAIRMENT: General Standard (Benthic), pH

Biological monitoring of the receiving stream identified a moderately impaired benthic community downstream of the Tyson Plant (VPDES Permit No. VA0004031) discharge when compared to the benthic community immediately upstream of the discharge. This resulted in this segment being assessed as impaired of the Clean Water Act's Aquatic Life Use Support Goal for the 1994 305(b) report. Continued monitoring resulted in a similar assessment for the 1996, 1998, 2002, and 2004 reports.

The TMDL study for the watershed was completed during the 2006 cycle. Extensive biological and nutrient monitoring was conducted. The benthic impairment continued and a pH impairment was noted at stations 2-XDD000.32 and 2-XDD000.40. The past phosphorus screening value was exceeded at multiple stations. The past chlorophyll A screening value was exceeded at 2-XDD000.40 and 2-XDD000.32 as well.

The TMDL was approved by the EPA on 8/05/2004 and by the SWCB on 3/15/05. The study attributed the benthic impairment to excess phosphorus and high pH. The allocation was 432.69 lbs/year of phosphorus, divided between Tysons Foods (409.35 lbs/yr) and nonpoint sources (23.34 lbs/year).

The segment remained impaired for benthics as well as pH during the 2014 cycle with an exceedance rate of 26/65 at 2-XDD000.40. and 31/64 at 2-XDD000.32.

IMPAIRMENT SOURCE Industrial Point Source, Nonpoint Source

The source of the impairment was attributed to excessive nutrient overenrichment.

RECOMMENDATION: Implementation

2014 Fact Sheets for 303(d) Waters

RIVER BASIN: James River Basin HYDROLOGIC UNIT: 02080206

STREAM NAME: Chickahominy River, UT - Unnamed Tributary

TMDL ID: G05R-01-NH3 2014 IMPAIRED AREA ID: VAP-G05R-01

ASSESSMENT CATEGORY: 5A TMDL DUE DATE: 2020

IMPAIRED SIZE: 1.17 - Miles Watershed: VAP-G05R

INITIAL LISTING: 2008

UPSTREAM LIMIT: Tyson Plant discharge

DOWNSTREAM LIMIT: Chickahominy River confluence

Segment consists of the unnamed tributary of the Chickahominy River to which the Tyson Plant discharges.

CLEAN WATER ACT GOAL AND USE SUPPORT:

Aquatic Life Use - Not Supporting, Wildlife Use - Not Supporting

IMPAIRMENT: Ammonia

Multiple exceedances of the chronic ammonia criteria had been noted in grab samples throughout the stream, therefore a special study was conducted in July 2005 to investigate the ammonia levels in the stream. Based on the results of the study, the segment was impaired for ammonia because of 6 acute ammonia exceedances each at 2-XDD000.84 and at 2-XDD000.91. A fish kill was noted in the pond.

Although there were no acute ammonia exceedances in the 2014 cycle, there were multiple chronic exceedances at 2-XDD000.32, 2-XDD000.40, 2-XDD000.84, and 2-XDD000.91. The impairment will be carried over this cycle, but continued monitoring is recommended.

IMPAIRMENT SOURCE Industrial Point Source

The source of the impairment is believed to be the Tysons Plant discharge.

RECOMMENDATION: Continue monitoring

2012 Fact Sheets for 303(d) Waters

RIVER BASIN: James River Basin HYDROLOGIC UNIT: 02080206

STREAM NAME: Chickahominy River, UT - Unnamed Tributary

TMDL ID: G05R-01-DO 2012 IMPAIRED AREA ID: VAP-G05R-01

ASSESSMENT CATEGORY: 5A TMDL DUE DATE: 2020

IMPAIRED SIZE: 1.15 - Miles Watershed: VAP-G05R

INITIAL LISTING: 2008

UPSTREAM LIMIT: Tyson Plant discharge

DOWNSTREAM LIMIT: Chickahominy River confluence

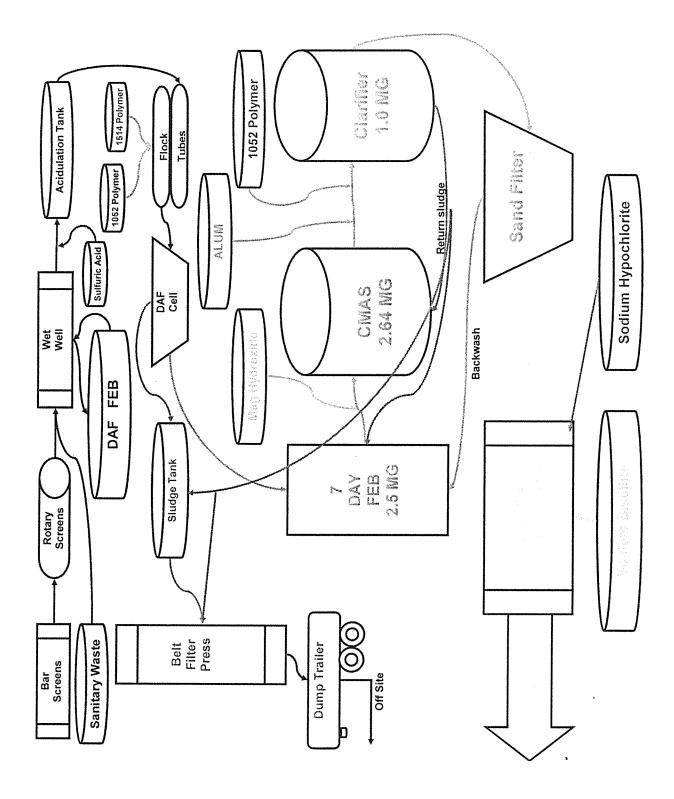
Segment consists of the unnamed tributary of the Chickahominy River to which the Tyson Plant discharges.

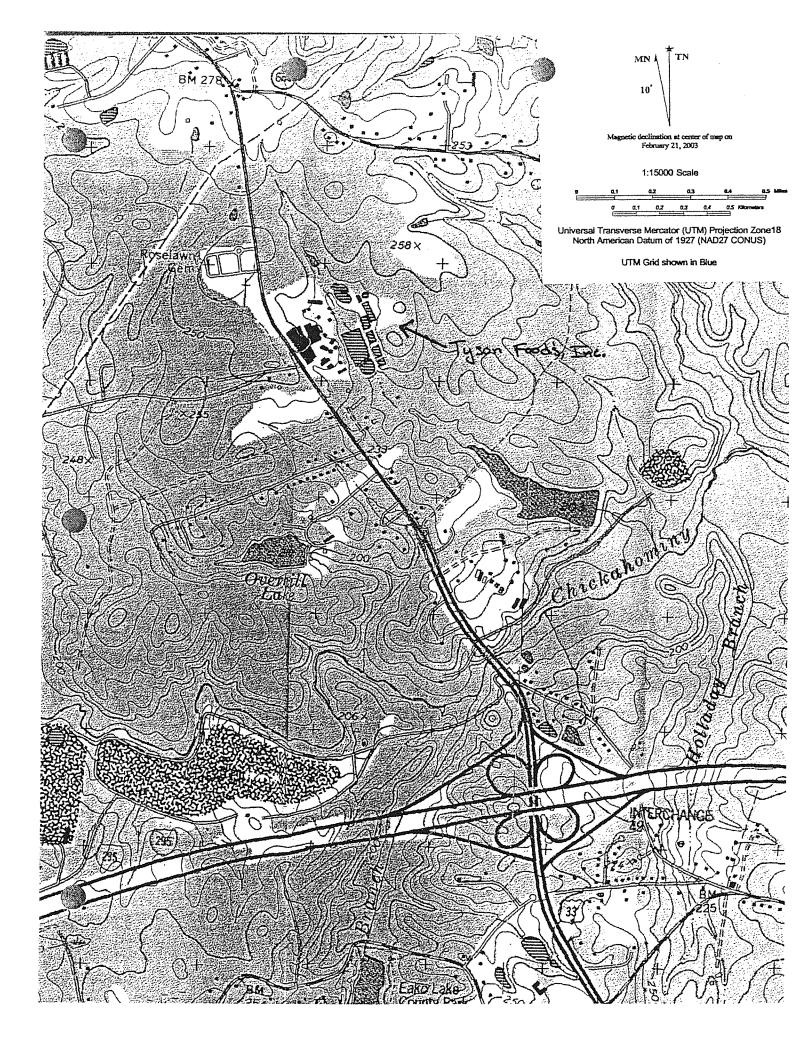
CLEAN WATER ACT GOAL AND USE SUPPORT:

Aquatic Life Use - Not Supporting

IMPAIRMENT: Dissolved Oxygen

The segment was assessed as not supporting of the Aquatic Life Use for dissolved oxygen due to an exceedance rate of 2/2 at 2-XDD000.65. Other stations in the segment have acceptable violation rates, therefore continued monitoring is recommended.


IMPAIRMENT SOURCE: Industrial Point Source


The source of the impairment is believed to be the Tysons Plant discharge.

RECOMMENDATION: Continue Monitoring

Attachment B: Site Diagram and Location Map

WWTP Process Flow

Attachment C: Site Inspection Report

Wastewater Facility Inspection Report Virginia Department of Environmental Quality

TECHNICAL INSPECTION REPORT

FACILITY NA	ME:		INSPECTION DATE:	August 30, 20	13	
Tyson Foods, Ir	ic.		INSPECTOR	Shawn Weime	er	
PERMIT No.:	VA0004031		REPORT DATE:	October 3, 20)13	
TYPE OF FACILITY:	✓ Municipal✓ Industrial	☐ Major ☑ Minor	TIME OF INSPECTION:	0913 Arrival	1330 Departure	
	Federal HP LP	Small Minor	TOTAL TIME SPENT (including prep & travel)	28 hours		
PHOTOGRAP	PHS: ▼ Yes	l No	UNANNOUNCED INSPECTION?	ΓYe	s 🗷 No	
REVIEWED B	Y / Date:					
PRESENT DU	RING INSPECTIO	N: Austin Fren	ch and Tim Lockhart			

TECHNICAL INSPECTION

TECHNICAL INSPECTION		
1. Has there been any new construction?	▼ Yes	ΠNο
 If so, were plans and specifications approved? 		
Comments: Upgrade from a single stage activated sludge treatment system to a		
four stage Bardenpho BNR process along with the addition of a UV disinfection		
system.		
2. Is the Operations and Maintenance Manual approved and up-to-date?	▼ Yes	ΓNο
Comments: An O&M manual dated August 7, 2012 was reviewed as part of this		
inspection.		
3. Are the Permit and/or Operation and Maintenance Manual specified licensed operator	▼ Yes	ΓNο
being met?		
Comments: 1 class I operator; three employees are working on obtaining their		
class IV license.		
4. Are the Permit and/or Operation and Maintenance Manual specified operator staffing	▼ Yes	□ No
requirements being met?		
Comments:		
5. Is there an established and adequate program for training personnel?	▼ Yes	ΓNο
Comments: Training includes: DEQ's operator training books, Sacramento		
operator training books, and licensing prep classes at John Tyler CC.		
6. Are preventive maintenance task schedules being met?	▼ Yes	ΓNo
Comments: Minor maintenance is performed by plant personnel and more		
complex repairs (e.g. rebuilding a pump) are performed by contractors.		
7. Does the plant experience any organic or hydraulic overloading?	☐ Yes	₹ No
Comments:		
8. Have there been any bypassing or overflows since the last inspection?	▼ Yes	T No
Comments: On August 10, 2012, the facility received heavy rainfall which cause	i l	
an overflow in their sanitary wet well. An estimated 300 to 500 gallons was		
reported to have reached the wastewater effluent creek which discharges into a		
UT of the Chickahominy River. After investigating the incident, weekend pump	•	
settings were modified so that flows in the wet wells could be properly controlled	I	
during incidents of heavy rainfall.		

vactovator i domey inoposition i toport		0
9. Is the standby generator (including power transfer switch) operational and exercised regularly?	▼ Yes	ΠNο
Comments:		
10. Is the plant alarm system operational and tested regularly? <u>Comments:</u>	▼ Yes	ΓNο
11. Is sludge disposed of in accordance with the approved sludge management plan? <u>Comments:</u> Sludge from the belt press is transported to an off-site composting facility.	▼ Yes	I No
12. Is septage received? • If so, is septage loading controlled, and are appropriate records maintained? Comments:	T Yes	▽ No
13. Are all plant records (operational logs, equipment maintenance, industrial waste contributors, sampling and testing) available for review and are records adequate? Comments:	▼ Yes	l No
14. Which of the following records does the plant maintain?		
▼ Operational logs		
Mechanical equipment maintenance Industrial Waste Contribution (Municipal fac Comments:	ilities)	
15. What does the operational log contain?		
▼ Visual observations ▼ Flow Measurement ▼ Laboratory results ▼ Process adjust	stments	
Control calculations Cother (specify) Comments:		
16. What do the mechanical equipment records contain?		
As built plans and specs Manufacturers instructions Lubrication schedules		
Spare parts inventory		
Cother (specify)		
Comments:		
17. What do the industrial waste contribution records contain (Municipal only)?		
☐ Waste characteristics ☐ Impact on plant ☐ Locations and discharge types		
Other (specify)		
Comments: Not Applicable		
18. Which of the following records are kept at the plant and available to personnel?		
Equipment maintenance records Operational log Industrial contributor records		
✓ Instrumentation records ✓ Sampling and testing records Comments:		
19. List records not normally available to plant personnel and their location:		
Comments: None	-	·
20. Are the records maintained for the required time period (three or five years)?	▼ Yes	□No

Permit # VA0004031

UNIT PROCESS EVALUATION SUMMARY SHEET

UNIT PROCESS	APPLICABLE	PROBLEMS*	COMMENTS
Sewage Pumping	X		Manager Control of Con
Flow Measurement (Influent)	X		
Screening/Comminution	X		
Grit Removal			**************************************
Oil Skimmer			
Flow Equalization	X		Anoxic Reactor #1 (7-Day FEB)
Ponds/Lagoons	X		Out of service
Imhoff Tank			04(010011100
Primary Sedimentation			
Trickling Filter			
Septic Tank and Sand Filter			
Rotating Biological Contactor			
Activated Sludge Aeration	X		Four stage Bardenpho BNR process with CMAS
Biological Nutrient Removal			Tour stage barderipho bivit process with OwiAo
Sequencing Batch Reactor			
Secondary Sedimentation	<u> </u>	1,3	Repairs to the clarifier were not completed as of
Secondary Sedimentation	^	1,3	October 2, 2013.
Flocculation			Colober 2, 2010.
Tertiary Sedimentation			
Filtration	X		Sand filters
Micro-Screening			Gand III. GIS
Activated Carbon Adsorption			
Chlorination			
Dechlorination			
Ozonation			
Ultraviolet Disinfection	X		
Post Aeration	X		
Flow Measurement (Effluent)	X		***************************************
Land Application (Effluent)			
Plant Outfall	X		

Sludge Pumping	X		
Flotation Thickening (DAF)	X		
Gravity Belt Thickening			
Aerobic Digestion			
Anaerobic Digestion			
Lime Stabilization			
Centrifugation			
Sludge Press	×	1	Belt press was not operational due to mechanical problems
Vacuum Filtration			
Drying Beds			
Thermal Treatment			
Incineration			
Composting			
Land Application (Sludge)			
1,		***	

- * Problem Codes
- 1. Unit Needs Attention
- 2. Abnormal Influent/Effluent
- 3. Evidence of Equipment Failure

- 4. Unapproved Modification or Temporary Repair
- 5. Evidence of Process Upset
- 6. Other (explain in comments)

				Permit # VA0004031
-	UNIT PROCESS: So	reening/Co	mminution	
1.	Number of units:	Manual:		Mechanical: 4
	Number of units in operation:	Manual:	<u>o</u>	Mechanical:4_
2.	Bypass channel provided?	[]Yes	[x] No	
	Bypass channel in use?	[]Yes	[] No	[x] N/A
3.	Area adequately ventilated?	[x] Yes	[] No	
4.	Alarm system for equipment failure or overloads?	[]Yes	[x] No	[] N/A
	If present, is the alarm system operational?	[]Yes	[] No	[x] N/A
	•			
5.	Proper flow-distribution between units?	[]Yes	[] No	[x] N/A
٥.	Topol non distinguish 20000000 anno-	.,	11.	
6.	How often are units checked and cleaned?	The self-	cleaning rot	ary units are checked daily
0.	Flow offers are units offered and offered:	mo oon s	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,
7.	Cycle of operation:	Continuo	uie	
۲.	Cycle of operation.	Continuo	<u>us</u>	
0	Valuma of paragrings removed:	Annrovin	actoly 2 to A	trailers daily
8.	Volume of screenings removed:	Approxiii	ialely 2 lO 4	trailers daily
_	Our and any divisor	ful Cood	[] Fair	Li Door
9.	General condition:	[x] Good	[] Fair	[]Poor
Cor	mments: These units are located inside the processi	ng plant (O	ffal Room) a	nd precede the Influent Pump
Sta	tion. An auger conveys screenings to waiting trailers	s; materials	are hauled	to a rendering facility.

Permit # VA0004031

	UNIT PROCESS: Sewage Pumping							
1.	Name	of station:	Process Wastewater In	fluent Pump	Station -	Wet Well Nos. 1 and 2		
2.	Locati	ion (if not at STP):	<u>N/A</u>					
3.	Follov	ving equipment operable:						
	a.	All pumps?	[x]	Yes []	No			
	b.	Ventilation?	[x]	Yes []	No	[] N/A		
	c.	Control system?	[x]	Yes []	No	[] N/A		
	d.	Sump pump?	[]	Yes []	No	[x] N/A		
	e.	Seal water system?	[]	Yes []	No	[x] N/A		
4.	Reliat	oility considerations:						
	a.	Class	N/A	A Industrial W	/astewater	Pump Station		
	b.	Alarm system operable?	[x]	Yes []	No	[] N/A		
	C.	Alarm conditions monitor	red:					
		 high water level: 	[x]	Yes []	No	[] N/A		
		2. high liquid level in dr	ry well: []	Yes []	No	[x] N/A		
		main electric power:	[]	Yes [x]	No	[] N/A		
		auxiliary electric pov	ver: []	Yes [x]	No	[] N/A		
		failure of pump motor	ors to start: []	Yes [x]	No	[] N/A		
		test function:	[]	Yes [x]	No			
		7. other:						
	d.	Backup for alarm system			'	[x] N/A		
	e.	Alarm signal reported to	· · · · · · · · · · · · · · · · · · ·	<u>local audio and visual, lab building</u>				
	f.	Continuous operability p						
		 Generator hook up? 	= =		-	standby generator		
		2. Two sources of elec			No			
		3. Portable pump?	• •		No			
		4. 1 day storage?		Yes [x]	No			
		5. other:						
5.	Does	station have bypass?	[]	Yes [x]	No			
	a. Ev	idence of bypass use?	[]	Yes []	No	[x] N/A		
	b. Ca	n bypass be disinfected?	[]	Yes []	No*	[x] N/A		
	c. Ca	n bypass be measured?	[]	Yes []	No*	[x] N/A		
6.	How o	often is station checked?	<u>ev</u>	ery 2 hours				
7. General condition:				Good []	Fair	[] Poor		

Comments: The station receives screened process wastewater and storm water runoff (Offal loading area) and pumps to the pretreatment facilities. The station is subdivided – Wet Well #1 and Wet Well #2. Wet Well #1 is an open tank equipped with 2 pumps, two mechanical mixers, and an overflow portal to Wet Well #2. Wet Well #2 is a covered tank also equipped with 2 pumps. All four centrifugal pumps and alarm systems are activated by sonic level detectors. Pumps #1 and #2 pump from Wet Well #1 and pumps #3 and #4 pump from Wet Well #2.

After screening, all wastewater flow enters Wet Well #1. From there it is pumped to the pre-DAF Acidulation Tank. Overflows from Wet Well #1 go to Wet Well #2. Excessive flows to Wet Well #1 may be diverted to the DAF FEB to achieve equalized flow through the DAF unit. The contents of the DAF FEB gravity flow back to Wet Well #1. DAF effluent flows by gravity to Anoxic Reactor #1 (7-Day FEB).

	UNIT PROCESS: Flow Equalization "DAF FEB"							
1. 2.	Type of unit: Number of cells: Number of cells in operation: What unit process does it precede?	[] In-line11 Wet Well #1	[x] Side-line [] Spill Pond					
3.	Is volume adequate?	[x] Yes	[] No					
4.	Type of mixing:	[] None [] Floating m	[x] Diffused air [] Fixed Mechanical nechanical					
5.	Condition of mixing equipment:	[x] Good	[]Average []Poor					
6.	How drawn off? a. Pumped from: Gravity flow from the bottom b. Weir:	[] Surface	[] Sub-surface [] Adjustable [x] N/A [] Sub-surface [x] N/A					
7.	What is the condition of the containment structure?	[x] Good	[]Fair []Poor					
8.	Are the facilities to flush solids and grease from basin walls	s adequate?	[x] Yes [] No [] N/A					
9.	Are there facilities for withdrawing floating material and foa	ım?	[] Yes [x] No					
10.	How are solids removed? Is it adequate?	[x] Drain dov [] Other: [x] Yes	vn [] Drag line					
11.	Is the emergency overflow in good condition?	[]Yes	[] No [x] N/A					
12.	Are the depth gauges in good condition?	[] Yes	[] No [x] N/A					
13.	General condition:	[x] Good	[]Fair []Poor					
Cor	nments: Wastewater flows by gravity, from the bottom,	back to Wet	Well #1.					

Permit # VA0004031

	UNIT PROCESS: Floatation Thickening (Dissolved Air Floatation – DAF)								
1.	Number of units:	1	TOURIST DI	<u></u>					
i.	Number of units in operation:	1							
2.	Floatation-aid system provided?	[x] Yes	[] No						
	Type of aid/dosage:	• •	m) and anioni	c polvmers	(4ppm)				
3.	Sludge pumping:	[] Manual	[x] Automatic		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				
4.	Skimmer blade removal system operating	g properly?	[x] Yes	[] No					
5.	Sludge collection system operating prope	erly?	[x] Yes	[] No					
6.	Effluent baffle system working properly?		[x] Yes	[] No					
7.	Is the unit used to thicken sludges other	than WAS?	[x] Yes	[] No					
	If not specify other sludge(s):				grease and floatables prior to on and sedimentation				
8.	Signs of overloading?		[] Yes	[x] No					
9.	Process control testing:								
	a. Feed solids testing:		[] Yes	[x] No	%				
	b. Thickened sludge solids testing:		[] Yes	[x] No	%				
	c. Underflow testing:		[] Yes	[x] No	Standard Control of Co				
	d. pH:		[x] Yes	[] No	continuous online				
10.	Percent capture of solids:		not measu	ured					
11.	General condition:		[] Good	[x] Fair	[] Poor				
Con	Comments: Wastewater is pumped from Wet Well #1 to the acidulation tank where sulfuric acid is added to bring								

Comments: Wastewater is pumped from Wet Well #1 to the acidulation tank where sulfuric acid is added to bring the pH to between 4.7 and 5.2 S.U. The acidulated wastewater enters flocculation tubes where cationic and anionic polymers are injected. The flocculated wastewater then enters the Dissolved Air Floatation (DAF) unit. Sulfuric acid is stored in a secondary contained tank which is outside and adjacent to the DAF building. Polymers are stored in the DAF building. Heavy particles settle down and are collected in the sludge cone and the floating floc is skimmed off of the top. Captured solids are transported to a rendering facility.

Permit # VA0004031

	UNIT PROCESS: Sewage Pumping						
1.	Name of station: <u>Domestic Waste</u>	water (Wet Well	No. 3) Pun	np Station			
2.	Location (if not at STP): <u>N/A</u>						
3.	Following equipment operable:						
	a. All pumps?	[x] Yes	[] No				
	b. Ventilation?	[x] Yes	[] No	[] N/A			
	c. Control system?	[x] Yes	[] No	[] N/A			
	d. Sump pump?	[] Yes	[] No	[x] N/A			
	e. Seal water system?	[] Yes	[] No	[x] N/A			
4.	Reliability considerations:						
	a. Class	[x] I	[]	[]			
	b. Alarm system operable?	[x] Yes	[] No	[] N/A			
	c. Alarm conditions monitored:						
	 high water level: 	[x] Yes	[] No	[] N/A			
	high liquid level in dry well:	[] Yes	[] No	[x] N/A			
	main electric power:	[] Yes	[x] No	[] N/A			
	auxiliary electric power:	[] Yes	[x] No	[] N/A			
	failure of pump motors to start:	[] Yes	[x] No	[] N/A			
	6. test function:	[] Yes	[x] No				
	7. other:	<u>N/A</u>					
	d. Backup for alarm system operational?	[] Yes	[] No	[x] N/A			
	e. Alarm signal reported to (identify):	<u>Lab building</u>					
	f. Continuous operability provisions:						
	 Generator hook up? 	[x] Yes	[] No <u>st</u>	andby generator			
	Two sources of electricity?	[] Yes	[x] No				
	Portable pump?	[] Yes	[x] No				
	4. 1 day storage?	[] Yes	[x] No				
	5. other:						
5.	Does station have bypass?	[] Yes	[x] No				
	a. Evidence of bypass use?	[] Yes	[] No	[x] N/A			
	b. Can bypass be disinfected?	[] Yes	[] No	[x] N/A			
	c. Can bypass be measured?	[] Yes	[] No	[x] N/A			
6.	How often is station checked?	Every 2 ho	urs				
7.	General condition:	[x] Good	[] Fair	[] Poor			

Comments: This station receives domestic wastewater from the plant and surface runoff from the chicken off-loading area. Raw sewage pump #5 and #6 pump wastewater from Wet Well #3 to the 7-Day FEB.

Permit # VA0004031

	UNIT PROCESS: Anoxic Reactor #1 (7-Day FEB)						
1.	Type of unit: Number of cells: Number of cells in operation:	[x] In-line	[] Side-line	[] Spill Pond			
2.	What unit process does it precede?	CMAS (com	olete mix act	ivated sludge unit)			
3. 4.	Is volume adequate? Type of mixing:	[x] Yes [] None [] Floating m					
5. 6.	Condition of mixing equipment: How drawn off?	[] Good	[x] Average				
7.	a. Pumped from:b. Weir:What is the condition of the containment structure?		[x] Sub-surfa [] Sub-surfa [] Fair				
8.	Are the facilities to flush solids and grease from basin walls	adequate?	[x] Yes	[] No [] N/A			
9.	Are there facilities for withdrawing floating material and foat	m?	[]Yes	[x] No			
10.	How are solids removed?	[x] Drain dow	'n	[] Drag line			
12.	Is it adequate? Is the emergency overflow in good condition? Are the depth gauges in good condition? General condition:	[x] Yes [] Yes [x] Yes [x] Good		[x] N/A [] N/A [] Poor			

Comments: The 7-Day FEB was retrofitted into an anoxic reactor as part of the upgrade to the four stage Bardenpho biological nutrient removal (BNR) process. Mixing in the reactor is provided by 10, 7.5 HP floating mixers. For aeration, subsurface diffuser laterals are located on the bottom of the basin. It was noted that these diffusers are only turned on for one hour each night to exercise the blower and prevent the diffusers from filling up with water. The processing plant generally operates only 5 days per week, so the level in the basin increases during the week, and is drawn down on the weekend. In turn, the waste load at the WWTP is a little lighter on Monday after the weekend, and is heavier by the end of the week. Some accumulation of solids beneath the water surface along the perimeter of the basin was visible. Mr. French noted that solids slowly accumulate where the influence of the mixtures does not reach; solids that accumulate are periodically removed by a contractor. A magnetic flow meter measures flow from the reactor basin. A high liquid-level condition will alarm in the lab building. The 7-Day FEB receives flow from the DAF, Return Activated Sludge (RAS) from the clarifier, nitrate recycle from the Complete Mix Activated Sludge (CMAS) unit, domestic wastewater from the plant, and backwash water from the sand filters.

At the time of the inspection, the 7-Day FEB was receiving RAS at a rate of 1200 gallons per minute. The nitrate recycle from the CMAS back to the 7-Day FEB was 2500 gallons per minute.

		UNIT PROCE	SS: Activated	Sludge	Aerat	tion (Ae	robic Rea	actor #2)		
1.	Number of	f units:		Com	plete l	Mix Acti	vated Slu	dge Unit	(CMAS)	
	Number of	f units in operation:								
2.	Mode of o	peration:	<u>B</u>	<u>NR</u>						
3.	Proper flov	w distribution between u	nits?	Yes	[]	No	[x] N/A			
4.	Foam conf	trol operational?	[]	Yes	[]	No	[x] N/A			
5.	Scum conf	trol operational?	[]	Yes	[]	No	[x] N/A			
6.	Evidence of	of the following problems	: :							
	a. Dead s	pots?	[]	Yes	[x]	No				
	b. Excess	ive foam?	[]	Yes	[x]	No			4	
	c. Poor a	eration?	[]	Yes	[x]	No				
	d. Excess	ive aeration?	[]	Yes	[x]	No				
	e. Excess	ive scum?	[]	Yes	[x]	No				
	f. Aeratio	n equipment malfunction	? []	Yes	[x]	No				
	g. Other:									
7.	Mixed liquo	or characteristics (as ava	ilable) As descri	bed or	the b	ench sl	neet for A	ugust 29	, 2013 at 12	00
	pH:	<u>6.89</u> SU	MLSS:		<u>5620</u>	mg/L				
	DO:	_ <u>2.41</u> _mg/L	SDI:		<u>not o</u>	btained	!			
	SVI:	not obtained	Color:		<u>Medi</u>	um Bro	<u>wn</u>			
	Odor:	<u>earthy</u>	Settleabili	ty:	<u>not o</u>	btained	!		di.	
			Other:							
8.	Return/wa	iste sludge:								
a.	return rate		1200 gpm to Ar					=		
b.	waste rate		Varies dependi							
C.	frequency	of wasting:	Varies dependi							
			[] Time Clock	[x] Manu	ual [] Continu	ous		
9.	Aeration s	system control:	[] Other							
10.	Effluent co	ontrol devices working pr	operly <i>(oxidation</i>	ditch	es)?	[] Yes	s []N	o [x]	N/A	
11.	General c	ondition:	[x] Good	[]	Fair	[]	Poor			
Comments: Diffused air is provided by three dedicated blowers; 2 of the 3 blowers were operating at the time of the inspection. Temperature, dissolved oxygen, and pH are continuously monitored in situ. The aeration cycle is manually controlled as needed in order to maintain the target operating range for D.O. between 2 and 3 mg/L. MgOH is added prior to CMAS for alkalinity and pH control. The CMAS is also equipped with two recirculation										
pur	nps to aid i	d prior to CMAS for alk mixing. The CMAS is e 7-Day FEB.								

		UNIT PRO	CESS	: Anoxic Re	acto	r #3 an	d Aero	obic I	Reactor#	<u>4</u>
1.	Number of	f units:		1 t	ank (dividea	by a p	partit	ion that c	ontains both reactors
		f units in operation:								
2.	Mode of o	•		BNF						
3.		w distribution between un	its?	[x] `	Yes	[]	No	[]	N/A	
4.	Foam con	trol operational?		[] Y	es/	[]	No	[x]	N/A	
5.	Scum con	trol operational?		[] Y	es/	[] [No	[x]	N/A	
6.	Evidence	of the following problems:								
	a. Dead s	pots?		[] Y	es/	[x]	No			
	b. Excess	sive foam?		[] Y	es	[x]	No			
	c. Poor a	eration?		[] Y	es/	[x]	No			
	d. Excess	sive aeration?		[] }		[x]				
		sive scum?		[] Y		[x]				
		on equipment malfunction	?	[] }	es/	[x]	No			
	g. Other:									
7.	Mixed lique for Reacte		lable)	As viewed d	lurin	g the ii	nspeci	tion c	on the Alle	en Bradley control system
	pH:	not obtained		MLSS:		not ob	tainec	<u>1</u>		
	DO:	<u>5.42</u> mg/L		SDI:		not ob	tainec	<u>1</u>		
	SVI:	not obtained		Color:		<u>Mediu</u>	m Bro	<u>wn</u>		
	Odor:	<u>earthy</u>		Settleability:		not ob	tainec	<u>1</u>		
				Other:		<u>Temp</u>	<u>erature</u>	e = 27	7.4 Celsiu	s; Nitrate = 13.7 mg/L
8.	Return/wa	aste sludge:								
a.	return rate			<u>pplicable</u>						
b.	waste rate			pplicable						
C.	frequency	of wasting:		pplicable					,•	
				ne Clock	IJ	Manua	ıl	[] Co	ntinuous	
9.	Aeration s	system control:	[X] Ot	her <u>PLC</u>						
10.	Effluent c	ontrol devices working pro	perly	(oxidation o	litch	es)?	[]Ye	s	[] No	[x] N/A
11.	General c	condition:	[x] Go	ood	[]	Fair	[] Poo	r	
der was ren Fro a c	nitrification stewater flo noval of so om Reactor oagulant (t	luble CBOD and ammon #4, wastewater gravity o aid phosphorus remo	is pro and in ia nit flows val) to	vided by 2, nto Aerobic rogen. Diffu to the secon Reactor #4	10 H Read Ised Indar at a	P floatictor #4, air is sy clarif rate of	ing su which upplie ier. Al	rface n served to lumir mL/n	mixers. ves as a p Reactor # num sulfat nin. At the	After Reactor #3, polishing reactor for final

Permit # VA0004031

	UNIT PROCESS: Sedimentation				
	[] Primary [x] Sec	ondary	[] Terti	ar <u>y</u>	
1.	Number of units:	_1			
	In operation:	_1			
2.	Proper flow-distribution between units?	[] Yes	[] No	[x] N/A	
3.	Signs of short-circuiting and/or overloads?	[] Yes	[x] No		
4.	Effluent weirs level?	[x] Yes	[] No	[] N/A	
	Clean?	[] Yes	[x] No		
5.	Scum collection system working properly?	[] Yes	[x] No	[] N/A	
6.	Sludge-collection system working properly?	[x] Yes	[] No	[] N/A	
7.	Influent, effluent baffle systems working properly?	[x] Yes	[] No	[] N/A	
8.	Chemical addition? Chemicals:	[] Yes	[x] No		
			_		
9.	Effluent characteristics:	<u>clear wit</u>	<u>h a trace o</u>	<u>f solids</u>	
10.	General condition:	[] Good	[] Fair	[x] Poor <u>See comments below</u>	

Comments: The entire surface of the clarifier contained a layer of floating solids. Some trace amounts of suspended solids appeared to be in the effluent from the clarifier. At the time of the inspection, the skimming mechanism for the clarifier was not operating. Reportedly, the skimmer arm got caught on one of the scum troughs at the end of July, 2013 and damaged the system. The initial attempt to repair the system failed due to improper parts. It was reported that the skimming system should be repaired the week following this inspection. In a follow-up conversation with Mr. French on 10/2/2013, it was noted that the clarifier has not yet been repaired, but they anticipate the repairs occurring in the next week. Mr. French confirmed that they are not experiencing any issues with final effluent from the treatment process as a result of the problem with the clarifier. From the clarifier, flow is gravity fed to the tertiary sand filters which is likely preventing solids from entering effluent from the treatment plant.

		UNIT PROCESS:	Sludge Pumping			
	(RAS and WAS)					
1. Nur	Number of Pumps: mber of pumps in operation:	<u>2</u> _1				
2.	Type of sludge pumped:	[] Primary [] Combination	[] Secondary [x] Other: <u>WAS</u>	[x] Return Activated		
3.	Type of pump:	[] Plunger [x] Centrifugal	[] Diaphragm [] Progressing ca	[] Screwlift vity [] Other:		
4.	Mode of operation:	[x] Manual	[] Automatic	[] Other:		
5.	Sludge volume pumped:	RAS continuously Not wasting to the problems with the	belt press at the ti	per minute me of inspection due to mechanical		
6.	Alarm system for equipment failures			[] No [x] N/A		
7.	General condition:	[x] Good [] Fair	[]Poor			
Coi	mments: None					

	UNIT PROCESS: Filtration (Tertiary)					
1.	Type of filters:	[x] Gravity	[] Pressure	[] Intermittent	
2.	Number of units: Number in operation:	<u>5</u> <u>5</u>				
3.	Operation of system:	[x] Automati [] Manual	_] Semi-automat] Other (specify		
4.	Proper flow-distribution between units?	[x] Yes [[] No	[] N/A		
5.	Evidence of following problems: a. Uneven flow distribution? b. Filter clogging (ponding)? c. Nozzles clogging? d. Icing? e. Filter flies? f. Vegetation on filter?	[] Yes [[] Yes [[] Yes [[x] No [x] No [] No [] No [x] No [x] No	[] N/A [] N/A [x] N/A [x] N/A [] N/A [] N/A		
6.	Filter aid system provided? Properly operating? Chemical used:	= =	[] No [] No	[] N/A		
7.	Automatic valves properly operating?	[x] Yes	[] No	[] N/A		
8.	Valves sequencing correctly?	[x] Yes	[] No	[] N/A		
9.	Backwash system operating properly?	[x] Yes	[] No	[] N/A		
10.	Filter building adequately ventilated?	[x] Yes	[] No	[] N/A		
11.	Effluent characteristics:	<u>Clear</u>				
12.	General condition:	[x] Good	[]Fair	[]Poor		
	nments: Continuous backwash filters replac vity feeds to the 7-Day FEB.	ed the previo	ous filte	ers since the la	st inspection. Filter backwash	

	UNIT PROCESS: Ultraviolet (UV)	Disinfection
1.	Number of UV lamps/assemblies:	2 Banks in series, each with 40 lamps
2.	Number in operation: Type of UV system and design dosage:	1 (second bank is backup) Trojan UV 3000 PTP, 14.0 mw/cm²
3. 4.	Proper flow distribution between units? Method of UV intensity monitoring?	[x] Yes [] No [] N/A continuous
5. 6. 7. 8. 9.	Adequate ventilation of ballast control boxes? Indication of on/off status of all lamps provided? Lamps assemblies easily removed for maintenance? Records of lamp operating hours & replacement dates provided: Routine cleaning system provided? Operated properly? Frequency of routine cleaning: Lamp energy control system operating properly? Date of last system overhaul:	[x] Yes [] No [] N/A [x] Yes [] No Lamps are cleaned every couple of months [x] Yes [] No not determined
	a. UV unit completely drained b. all surfaces cleaned c. UV transmissibility checked d. output of selected lamps checked e. output of tested lamps f. total operating hours, oldest lamp/assembly g. number of spare lamps and ballasts available: UV protective eyeglasses provided:	[] Yes [] No [] Yes [] No [] Yes [] No [] Yes [] No not determined
13.	General condition:	[x] Yes [] No [x] Good [] Fair [] Poor
	mments: Bulbs are replaced in the system after 12,000 hours of stact tank before the final effluent is discharged.	use. From here, flow goes to the old chlorine

				Number of units:	1.
			_1	imber of units in operation:	Nun
	[x] N/A	[] No	[]Yes	Proper flow distribution between units?	2.
				Evidence of following problems:	3.
		[x] No	[]Yes	Dead spots?	э. a.
			[]Yes	Excessive foam?	
	E 1 NI / A				
	[] [V/A	[X] NO	[] Tes	wechanical equipment failure?	u.
[] Continuous	ː] Manual	ock [x	[] Time clo	How is the aerator controlled?	4.
[] N/A	*******		[] Other _		
		<u>ıs</u>	continuo	What is the current operating schedule?	5.
	[x] N/A	[] No*	[]Yes	Step weirs level?	6.
by the facility)	as reported	at 0640 (a	9.63 mg/L	Effluent D.O. level:	7.
	[]Poor	[]Fair	[x] Good	General condition:	8.
nel.	ontact chan	hlorine c	on in the old o	omments: A blower provides diffused aerat	Con
[] N/A by the facility)	(] Manual [x] N/A as reported [] Poor	[x] No ock [x] [] No* at 0640 (a) [] Fair	[] Yes [] Yes [] Time clo [] Other continuous [] Yes 9.63 mg/L [x] Good	Poor aeration? Mechanical equipment failure? How is the aerator controlled? What is the current operating schedule? Step weirs level? Effluent D.O. level: General condition:	5.6.7.8.

				Permit # VA0004031		
	UNIT PROCESS: Flow Measurement					
	[] Influent []	Intermediate	[x] Eff	<u>luent</u>		
1.	Type measuring device:	90° v-noto	h weir and	l an ultra-sonic sensor (TIR equip.)		
2.	Present reading:	438 gallor	ns per minu	ute at 1222 on 8/30/2013		
3.	Bypass channel?	[]Yes	[x] No			
	Metered?	[]Yes	[] No	[x] N/A		
4.	Return flows discharged upstream from meter?	[]Yes	[x] No			
	If Yes, identify:	9				
5.	Device operating properly?	[x] Yes	[] No			
0.	Zonoc opolating proporty.	[/] 100	[],,,			
6.	Date of last calibration:	<u>8/14/2013</u>				
7.	Evidence of following problems:					
	a. Obstructions?	[]Yes	[x] No			
	b. Grease?	[]Yes	[x] No			
8.	General condition:	[x] Good	[] Fair	[]Poor		
Co	mments:					
•	······································					

		Permit # VA0004031			
	UNIT PROCESS: Pressure Filtration (Sludge)				
	(Belt Press)				
1.	Number of units:	<u>_1</u>			
Nun	nber In operation:	<u> </u>			
2.	Percent solids in influent sludge:	Not obtained			
3.	Percent solids in discharge cake:	Not obtained			
4.	Filter run time:	Not obtained			
5.	Amount cake produced:	Not obtained			
6.	Conditioning chemicals used:	[x] Yes [] No			
Тур	e and Dose:	Cationic Emulsion; dose not obtained			
7.	Sludge pumping:	[x] Manual [] Automatic			
8.	Recirculating system included on acid wash:	[] Yes [] No [x] N/A			
9.	Signs of overloads?	[] Yes [x] No			
10.	General condition:	[x] Good [] Fair [] Poor			
Con	nments: The belt press is located in the DAF bu	uilding and it is used when it is operational. The belt press was			
not	operating at the time of the inspection due to m	nechanical problems.			

Permit # VA0004031

EFFLUENT FIELD DATA: For 8/30/2013

Flow	MGD	Dissolved Oxygen	9.36 mg/l	TRC (Contact Tank)	mg/l
pН	6.71 S.U.	Temperature	·c	TRC (Final Effluent)	mg/l
Was a	Sampling Inspection co	onducted?	see Sampling Inspec	ction Report) 🔽 No	

	CONDITION OF OUTFALL AND EFFLUENT CHARACTERISTICS:
1.	Type of outfall:
	▼ Shore based □ Submerged
	Diffuser?
	⊤ Yes ▼ No
2.	Are the outfall and supporting structures in good condition?
	▼ Yes □ No
3.	Final Effluent (evidence of following problems): None
	☐ Sludge bar ☐ Grease ☐ Turbid effluent ☐ Visible foam ☐ Unusual color ☐ Oil sheen
4.	Is there a visible effluent plume in the receiving stream? The receiving stream was not observed
	⊤Yes ⊤No
5.	Receiving stream: The receiving stream was not observed
	☐ No observed problems
	☐ Indication of problems (explain below)
	<u>Comments:</u> The receiving stream was not observed. Effluent from the treatment and effluent in the discharge channel that runs across the property was clear. Fish were observed in the discharge channel.

Permit # VA0004031

REQUEST for ACTION:

1. None

NOTES and COMMENTS:

- 1. The clarifier is in need of repairs. During the inspection, the surface of the clarifier was covered in floating solids. During a follow-up conversation with Mr. French on October, 2, 2013, this inspector inquired as to whether the clarifier had been repaired since the inspection. During that discussion, it was reported that the repairs should be completed sometime the following week. The presence of significant solids on the surface increases the potential for solids to enter the effluent leaving the clarifier. Increased solids flowing to the sand filters may decrease filtering capability. The clarifier does not appear to be operating in accordance with the operations and maintenance manual and should be repaired as soon as possible.
- 2. The sludge filter belt press was not operating at the time of the inspection due to mechanical problems. It was reported that wasting to the press occurs when the press is operational, but that the press is not consistently operational. During a follow-up conversation with Mr. French on October 2, 2013, the press had been operating successfully for the previous two weeks. It appears that the press could benefit from additional routine maintenance being performed to ensure that the press is available when needed.
- 3. A review of the VAN040089 General Permit for Total Nitrogen and Total Phosphorus Discharges discharge monitoring report for the July, 2013 monitoring period was performed as part of this inspection. Copies of the certificates of analysis from "Air Water and Soil Laboratories, Inc." for the July, 2013 monitoring period were reviewed and the nutrient loading calculations for July, 2013 were duplicated by this inspector. The nutrient discharge monitoring report for July, 2013 appears to be complete and accurate.
- 4. The waste sludge pond is no longer in service, so the facility depends on the belt press to be operating properly in order to waste sludge.

Permit # VA0004031

STORM WATER POLLUTION PREVENTION PLAN (SWPPP)

1.	Has a SWPPP been developed and implemented?	[x] Yes [] No
2.	Was the SWPPP, compliance inspection report, and other information available and is the S	WPPP current? [x] Yes [] No
3.	Contents must include: Pollution prevention team identification and responsibilities	[x] Yes [] No
	Description of potential pollutant sources must include: Detailed site drainage map Inventory of exposed materials	[x] Yes [] No

Measures and controls must include:

[x] Yes [] No

- Good housekeeping
- Preventive maintenance

Sampling data N/A

- Spill prevention and response procedures
- Routine inspections and visual exam of storm water samples plus documentation and follow up tracking and procedures
- Employee training
- Record keeping and internal reporting procedures

Updated list of spills and leaks of toxic or hazardous pollutants

Risk identification and summary of potential pollutant sources

- Sediment and erosion control
- · Management of run-off

Annual Comprehensive site compliance evaluation?

[x] Yes [] No

- Visual inspection of all areas contributing to a storm water discharge with industrial activity; evaluation of measures
 to reduce pollutant loadings; observing structural storm water management measures, sediment and erosion
 control measures, and other structural pollution prevention measures; visual inspection of equipment needed to
 implement the plan
- · Based on results of evaluation, revise SWPPP
- Compliance inspection report summarizing the scope of the evaluation, personnel making evaluation, dates of evaluation, major observations, actions taken, certification of compliance and signatory requirements met

Requirements for facilities subject to Emergency Planning and Community Right to Know Act (EPCRA) Section 313 [x] Yes [] No

Comments: The SWPPP was last updated on 1/7/2013 upon completion of the comprehensive site compliance evaluation that was completed on the same day. Quarterly visual monitoring for the first and second quarters of 2013 was reviewed during this inspection.

Permit # VA0004031

LABORATORY INSPECTION

PRESENT DURING INSPECTION: Austin French	
1. Do lab records include sampling date/time, analysis date/time analyst's initials, instrument calibration and maintenance, and	
▼ Sampling Date/Time ▼ Analysis Date/Time ▼ Sample	le Location 🔽 Test Method 🔽 Test Results
✓ Analyst's Initials ✓ Instrument Calibration & Main	ntenance
Are Discharge Monitoring Reports complete and correct? Month(s) reviewed:	▼ Yes
July, 2013	□ No
3. Are sample location(s) according to permit requirements (after otherwise specified)?	er all treatment unless
• /	Г No
4. Are sample collection, preservation, and holding times appro- equipment adequate?	priate; and is sampling
equipment adequate:	Г No
5. Are grab and composite samples representative of the flow ar monitored activity?	nd the nature of the Yes
Ž	ΓNo
6. If analysis is performed at another location, are shipping proc List parameters and name & address of contract lab(s):	cedures adequate?
BOD, TSS, Fecal Coliform, Total Phosphorus,	
TKN, Settleable Solids, E. Coli, Total Recovera Nitrite and Nitrate is performed by Air Water	
Inc. in Richmond, VA.	and Son Laboratories,
7. Is Laboratory equipment in proper operating range? Auto sampler: temperature not observed during this inspection	on Yes
	□ □ No
8. Are annual thermometer calibration(s) adequate? Not determ	mined Tyes
	l No
9. Is the laboratory grade water supply adequate? Not Applicable	☐ Yes
	Г No
10. Are analytical balance(s) adequate? Not Applicable	☐ Yes
Tive Applicanic	ΓNo

11. Parameters evaluated during this inspection (attach checklists):
▼ pH
Temperature
▼ Total Residual Chlorine
✓ Dissolved Oxygen
☐ Biochemical Oxygen Demand
Total Suspended Solids
☐ Other (specify)
Cother (specify)
☐ Other (specify)
Comments:

Permit # VA0004031

LABORATORY INSPECTION REQUEST for ACTION:

- 1. In May 2012, EPA issued a final rule to approve several new or revised analytical methods for measuring regulated pollutants in wastewater. This rule is also called the Methods Update Rule (MUR). One of the changes in this MUR is the naming convention used for citing Standard Methods. Citing the edition of Standard Methods is no longer applicable; now the citation must include the "date tag" in which the method was approved. Also note that for pH, D.O. and TRC, the 18th and 19th Editions of Standard Methods are no longer approved. Only the 20th, 21st and online Editions are approved. The current method citations are: D.O.: SM4500-O G -2001; pH: SM4500-H⁺ B -2000; TRC: SM4500-Cl G -2000 [This item is new guidance and does not require a response]
- 2. During the inspection, it was not determined if the thermistor present in the pH and D.O. meter is verified annually. The thermistor in the pH and D.O. meter should be verified against a NIST certified thermometer annually. No response to this item is required.
- 3. Initial Demonstration of Capability (IDC) must be completed by each operator who analyzes samples for pH, TRC, and D.O. This item is new guidance and was discussed during the inspection, so no response is necessary. Please see the enclosed forms for instructions. Please note that there are no specific credentials required for the witness involved with the IDC.
- 4. Three buffers should be used to perform the daily calibration of the pH meter. This item was discussed during the inspection so no response to this item is required.

NOTES and COMMENTS: None

ANALYST: Discussed with Austin French VPDES NO VA0004031	ANALYST:	Discussed with Austin French	VPDES NO	VA0004031
--	----------	------------------------------	----------	-----------

Meter: YSI 52

Parameter: Dissolved Oxygen

Method: Membrane Electrode

Facility Elevation: approximately240'

1/08

METHOD OF ANALYSIS:

Х	18 th Edition of Standard Methods – 4500-O G
	21st or Online Editions of Standard Methods – 4500-O G (01)

	DO is a method-defined analyte so modifications are not allowed. [40 CFR Part 136.6]	Υ	N
1)	Is a certificate of operator competence or initial demonstration of capability available for <u>each</u> <u>analyst/operator</u> performing this analysis? [SM 1020 B.1]		x
2)	If samples are collected, is collection carried out with a minimum of turbulence and air bubble formation and is the sample bottle allowed to overflow several times its volume? [1.c]	х	
3)	Are meter and electrode operable and providing consistent readings? [3]	Х	
4)	Is membrane in good condition without trapped air bubbles? [3.b]	Х	
5)	Is correct filling solution used in electrode? [Mfr.]	Х	
6)	Are water droplets shaken off the membrane prior to calibration? [Mfr.]	X	
7)	Is meter calibrated before use or at least daily? [Mfr. & Part 1020]	Х	
8)	Is calibration procedure performed according to manufacturer's instructions? [Mfr.]	Х	
9)	Is sample stirred during analysis? [Mfr.]	Х	
10)	Is the sample analysis procedure performed according to manufacturer's instructions? [Mfr.]	Х	
11)	Is meter stabilized before reading D.O.? [Mfr.]	Х	
12)	Is electrode stored according to manufacturer's instructions? [Mfr.]	Х	

PROBLEMS: An Initial Demonstration of Capability (IDC) needs to be completed. Mr. French believed that the meter was set to an elevation, but he was unable to confirm while onsite. The meter should be evaluated to confirm that it is set to the appropriate elevation for the facility. The approximate elevation for the facility as noted above is 240 feet. This elevation was noted on the inspection report for the inspection conducted on April 2, 2008.

ANALYST: Discussed with Austin French	VPDES NO	VA0004031
---------------------------------------	----------	-----------

Meter: HQ 30d HACH Meter

Parameter: Hydrogen Ion (pH)

1/08

Method: Electrometric

METHOD OF ANALYSIS:

Х		18 th Edition of Standard Methods – 4500-H ⁺ B
		21 st or Online Editions of Standard Methods – 4500-H ⁺ B (00)

	pH is a method-defined analyte so modifications are not allowed. [40 CFR Part 136.6]	Y	N	
1)	Is a certificate of operator competence or initial demonstration of capability available for each each each external source of buffer (different lot/manufacturer than buffers used to calibrate meter) . Recovery for each of the 4 samples must be +/- 0.1 SU of the known concentration of the sample. [SM 1020 B.1]		x	
2)	Is the electrode in good condition (no chloride precipitate, scratches, deterioration, etc.)? [2.b/c and 5.b]	х		
3)	Is electrode storage solution in accordance with manufacturer's instructions? [Mfr.]	х		
4)	Is meter calibrated on at least a daily basis using three buffers all of which are at the same temperature? [4.a] NOTE: Follow manufacturer's instructions. Only two buffers		х	
5)	After calibration, is a buffer analyzed as a check sample to verify that calibration is correct? Agreement should be within +/- 0.1 SU. [4.a]	х		
6)	Do the buffer solutions appear to be free of contamination or growths? [3.1]	Х		
7)	Are buffer solutions within the listed shelf-life or have they been prepared within the last 4 weeks? [3.a]	x		
8)	Is the cap or sleeve covering the access hole on the reference electrode removed when measuring pH? [Mfr.]	x		
9)	For meters with ATC that also have temperature display, is the thermometer verified annually? [SM 2550 B.1]	Not determined		
10)	Is temperature of buffer solutions and samples recorded when determining pH? [4.a]	Х	х	
11)	Is sample analyzed within 15 minutes of collections? [40 CFR Part 136]	Х		
12)	Is the electrode rinsed and then blotted dry between reading solutions (Disregard if a portion of the next sample analyzed is used as the rinsing solution.)? [4.a]	х		
13)	Is the sample stirred gently at a constant speed during measurement? [4.b]	Х		
14)	Does the meter hold a steady reading after reaching equilibrium? [4.b]	Х		

PROBLEMS: An IDC needs to be completed and only two buffers are currently being used along with a post calibration check. It was not determined if the thermistor is verified annually with a NIST thermometer.

ANALYST:	Discussed with Austin French	VPDES NO.	VA0004031

Instrument: DR 2800 HACH Meter

Parameter: Total Residual Chlorine (TRC)

Method: DPD Colorimetric (HACH Pocket Colorimeter)

1/08

1ETHOD OF ANALYSIS:

Х	HACH Manufacturer's Instructions (Method 8167) plus an edition of Standard Methods
Х	18 th Edition of <i>Standard Methods</i> 4500-Cl G
	21 st Edition of Standard Methods 4500-Cl G (00)

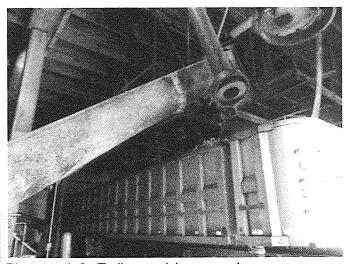
		Υ	N
1)	Is a certificate of operator competence or initial demonstration of capability available for <u>each</u> <u>analyst/operator</u> performing this analysis? NOTE : Analyze 4 samples of known TRC. Must use a lot number or source that is different from that used to prepare calibration standards. May not use Spec√ [™] . [SM 1020 B.1]		х
2)	Are the DPD PermaChem™ Powder Pillows stored in a cool, dry place? [Mfr.]	х	
3)	Are the pillows within the manufacturer's expiration date? [Mfr.] pillows expire 11/2016	х	
4)	Has buffering capability of DPD pillows been checked annually? (Pillows should adjust sample pH to between 6 and 7) [Mfr.]	х	
5)	When pH adjustment is required, is H ₂ SO ₄ or NaOH used? [Hach 11.3.1]	Х	
6)	Are cells clean and in good condition? [Mfr]	х	
7)	Is the low range (0.01 mg/L resolution) used for samples containing residuals from 0.2.00 mg/L? [Mfr.]	Х	
8)	Is calibration curve developed (may use manufacturer's calibration) with daily verification using a high and a low standard? NOTE : May use manufacturer's installed calibration and commercially available chlorine standards for daily calibration verifications. [18 th ed 1020 B.5; 21 st ed 4020 B.2.b]	x	
9)	Is the 10-mL cell (2.5-cm diameter) used for samples from 0-2.00 mg/L? [Mfr.]	Х	
10)	Is meter zeroed correctly by using sample as blank for the cell used? [Mfr.]	Х	
11)	Is the instrument cap placed correctly on the meter body when the meter is zeroed and when the sample is analyzed? [Mfr.]	х	
12)	Is the DPD Total Chlorine PermaChem™ Powder Pillow mixed into the sample? [Hach 11.1]	Х	
13)	Is the analysis made at least three minutes but not more than six minutes after PermaChem™ Powder Pillow addition? [Hach 11.2]	х	
14)	If read-out is flashing [2.20], is sample diluted correctly, and then reanalyzed? [Hach 1.2 & 2.0]	Х	
15)	Are samples analyzed within 15 minutes of collection? [40 CFR Part 136]	Х	

PROBLEMS: An IDC needs to be completed.

Wastewater Facility Inspection Report DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER DIVISION SAMPLE ANALYSIS HOLDING TIME/CONTAINER/PRESERVATION CHECK SHEET

			u.	evised	Revised 04/13 [40 CFR, Part 136.3, Table II]	[40 CF	R, Part	136.3,	[able II]					
FACILITY NAME:		Tyson	Tyson Foods, Inc.	, Inc.				VPDES NO	ON S	VA0004031	DATE:	An	August 30, 2013	2013
HOLDING TIMES [Note: (time (end of coll)	HOLDING TIMES [Note: Collection period (for composites) and Sample Collection time (end of collection period) must be recorded on the COC.]	osites) ar	nd Sam the CO	ple Coll <u>C.J</u>	ection	SAM	PLE C(SAMPLE CONTAINER	ER	PRESERVATION [Note: Preservation is to occur with minutes of the end of the collection period.]		tion is to	Preservation is to occur within 15 d of the collection period.]	hin 15
PARAMETER	APPROVED	MET?	ċ	LOGGED?	ED?	ADEQ. VOLUME	Ö. IME	APPROP. TYPE	Б Б	APPROVED	2	MET?	СНЕС	снескер?
		Y	z	Υ	z	Υ	z	Υ	z		\	z	λ	z
Hd	15 MIN.	×		×		×		×		N/A				
CHLORINE	15 MIN.	×		×		×		×		N/A				
DISSOLVED 0 ₂	15 MIN./IN SITU	×		×		×		×		N/A				
TEMPERATURE	IMMERSION STAB.									N/A				
BOD5 & CBOD5	48 HOURS	×		×		×		×		ANALYZE 2 HRS or ≤6° C	x o		×	
TSS	7 DAYS	×		×		×		×		೨ ಿ9≂	×		×	
FECAL COLIFORM / E. coli / Enterococci	6 HRS & 2 HRS TO PROCESS	×		×		×		×		<10° C (1 HOUR)+0.008% Na ₂ S ₂ 0 ₃	X %8		×	
OIL & GREASE	28 DAYS	×		×		×		×		≤6° C+H₂SO4/HCL pH<2	2 X		×	
AMMONIA	28 DAYS	×		×		×		×		≤6° C+H ₂ S0₄ pH<2 DECHLOR	×		×	
TKN	28 DAYS	×		×		×		×		≤6° C+H ₂ S0₄ pH<2 DECHLOR	×		×	
NITRATE	48 HOURS									جو _ه د				
NITRATE+NITRITE	28 DAYS	×		×		×		×		≤6° C+H ₂ S0 ₄ pH<2	×		×	
NITRITE	48 HOURS									2,9⋝				
PHOSPHATE, ORTHO	48 HOURS									FILTER, ≤6° C				
TOTAL PHOS.	28 DAYS	×		×		×		×		≤6° C+H ₂ S0 ₄ pH<2	×		×	
METALS (except Hg)	6 MONTHS	×		×		×		×		HNO ₃ pH<2	×		×	
MERCURY	28 DAYS													
PROBLEMS: None														

Permit # VA0004031

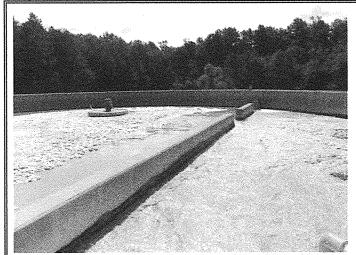

Digital Photographs Taken: 8/30/2013

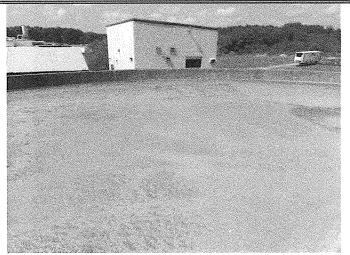
Photograph 1: Sulfuric acid tanks with secondary containment

Photograph 2: Dissolved Air Floatation (DAF) unit

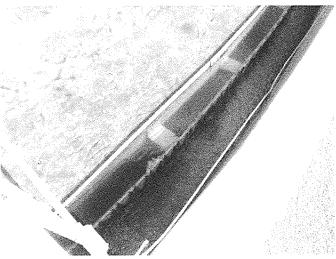
Photograph 3: Trailer receiving screenings

Photograph 4: Trees that were reportedly planted to block the view of the treatment plant from state route 33

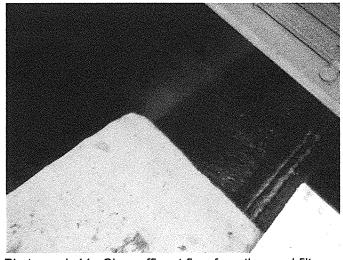

Photograph 5: Anoxic Reactor #1 (7-Day FEB)

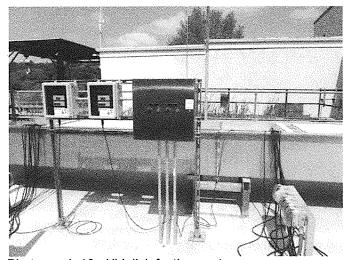

Photograph 6: Aerobic Reactor #2 (CMAS)

Permit # VA0004031

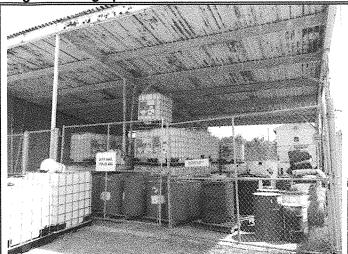

Digital Photographs Taken: 8/9/2013

Photograph 7: Anoxic Reactor #3 (left) and Aerobic Reactor #4 (right)


Photograph 8: Floating solids covering the entire surface of the clarifier


Photograph 9: Mostly clear effluent from the clarifier; a trace of solids was noted in the effluent channel

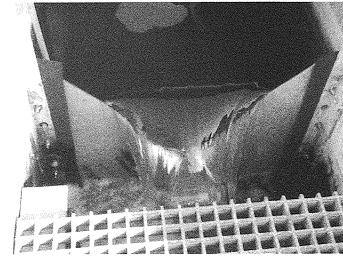
Photograph 10: Photo depicts solids between scum baffle and weir with an algal mat in the effluent channel


Photograph 11: Clear effluent flow from the sand filters

Photograph 12: UV disinfection system

Permit # VA0004031

Digital Photographs Taken: 8/30/2013


Photograph 13: Materials storage under cover and fenced in

Photograph 14: Truck fueling area

Photograph 15: Spill kit in the truck fueling area

Photograph 16: Final clear effluent from the treatment plan

Photograph 17: Clear effluent in the discharge channel for the treatment plant; fish were observed in this channel

Photograph 18: Location where the stormwater outfall 002 combines with flow from outfall 001

Attachment D: Applicable Federal Effluent Limitation Guidelines

Subpart K—Poultry First Processing

§432.110 Applicability.

This part applies to discharges of process wastewater resulting from the slaughtering of poultry, further processing of poultry and rendering of material derived from slaughtered poultry. Process wastewater includes water from animal holding areas at these facilities.

§432.111 Special definitions.

For the purpose of this subpart: *Poultry first processing* means slaughtering of poultry and producing whole, halved, quarter or smaller meat cuts.

§432.112 Effluent limitations attainable by the application of the best practicable control technology currently available (BPT).

Except as provided in <u>40 CFR 125.30</u> through 125.32, any existing point source subject to this subpart that slaughters more than 100 million pounds per year (in units of LWK) must achieve the following effluent limitations representing the application of BPT:

Effluent Limitations

[BPT]

Regulated parameter	Maximum daily ¹	Maximum monthly avg. ¹
Ammonia (as N)	8.0	4.0
BOD_5	26	16
Fecal Coliform	(2)	(3)
O&G (as HEM)	14	8.0
TSS	30	20

¹mg/L (ppm).

§432.113 Effluent limitations attainable by the application of the best available technology economically achievable (BAT).

Except as provided in <u>40 CFR 125.30</u> through 125.32, any existing point source subject to this subpart that slaughters more than 100 million pounds per year (in units of LWK) must achieve the following effluent limitations representing the application of BAT:

Effluent Limitations

²Maximum of 400 MPN or CFU per 100 mL at any time.

³No maximum monthly average limitation.

[BAT]

Regulated parameter	Maximum daily ¹	Maximum monthly avg. ¹
Ammonia (as N)	8.0	4.0
Total Nitrogen	147	103

¹mg/L (ppm).

§432.114 Pretreatment standards for existing sources (PSES). [Reserved]

§432.115 New source performance standards (NSPS).

Any source that is a new source subject to this subpart must achieve the following performance standards:

(a) Facilities that slaughter no more than 100 million pounds per year (in units of LWK) must achieve the following performance standards:

Performance Standards

[NSPS]

Regulated parameter	Maximum daily ¹	Maximum monthly avg. ¹
Ammonia (as N)	8.0	4.0
BOD_5	26	16
Fecal Coliform	(²)	(3)
O&G (as HEM)	14	8.0
TSS	30	20

¹mg/L (ppm).

(b) Facilities that slaughter more than 100 million pounds per year (in units of LWK) must achieve the following performance standards:

Performance Standards

[NSPS]

Regulated	Maximum daily ¹	Maximum monthly avg. ¹
parameter	Maximum dany	waxiiiuiii iiioiitiiiy avg.

²Maximum of 400 MPN or CFU per 100 mL at any time.

³No maximum monthly average limitation.

Ammonia (as N)	8.0	4.0
BOD_5	26	16
Fecal Coliform	(²)	$\binom{3}{}$
O&G (as HEM)	14	8.0
TSS	30	20
Total Nitrogen	147	103

¹mg/L (ppm).

§432.116 Pretreatment standards for new sources (PSNS). [Reserved]

§432.117 Effluent limitations attainable by the application of the best control technology for conventional pollutants (BCT).

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must achieve the following effluent limitations representing the application of BCT: Limitations for BOD₅, TSS, O&G (as HEM), and fecal coliform are the same as the corresponding limitation specified in §432.112.

²Maximum of 400 MPN or CFU per 100 mL at any time.

³No maximum monthly average limitation.

Attachment E: Facility Effluent Data Outfall 001 (Water Quality Criteria Monitoring and Application Data)

ATTACHMENT A DEPARTMENT OF ENVIRONMENTAL QUALITY WATER QUALITY CRITERIA MONITORING

CASRN#	CHEMICAL	EPA ANALYSIS NO.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENCY
		META	ALS			
7440-36-0	Antimony, dissolved	(3)	1.4	< 0.0014 mg/l	G or C	1/5 YR
7440-38-2	Arsenic, dissolved	(3)	1.0	< 0.001 mg/l	G or C	1/5 YR
7440-43-9	Cadmium, dissolved	(3)	0.30	< 0.003 mg/l	G or C	1/5 YR
16065-83-1	Chromium III, dissolved (8)	(3)	3.6	< 0.0036 mg/l	G or C	1/5 YR
18540-29-9	Chromium VI, dissolved (8)	(3)	1.6	< 0.0016 mg/l	G or C	1/5 YR
7440-50-8	Copper, dissolved	(3)	0.50	< 0.0005 mg/l	G or C	1/5 YR
7439-92-1	Lead, dissolved	(3)	0.50	< 0.0005 mg/l	G or C	1/5 YR
7439-97-6	Mercury, dissolved	(3)	1.0	< 0.0002 mg/l	G or C	1/5 YR
7440-02-0	Nickel, dissolved	(3)	0.94	< 0.00094 mg/l	G or C	1/5 YR
7782-49-2	Selenium, Total Recoverable	(3)	2.0	< 0.002 mg/l	G or C	1/5 YR
7440-22-4	Silver, dissolved	(3)	0.20	< 0.0002 mg/l	G or C	1/5 YR
7440-28-0	Thallium, dissolved	(4)	(5)	< 0.002 mg/l	G or C	1/5 YR
7440-66-6	Zinc, dissolved	(3)	3.6	< 0.0036 mg/l	G or C	1/5 YR
		PESTICIDE	S/PCB'S			
309-00-2	Aldrin	608	0.05	<.05 ug/l	G or C	1/5 YR
57-74-9	Chlordane	608	0.2	<.20 ug/l	G or C	1/5 YR
2921-88-2	Chlorpyrifos (synonym = Dursban)	622	(5)	< 0.2 ug/l	G or C	1/5 YR
72-54-8	DDD	608	0.1	< .10 ug/l	G or C	1/5 YR
72-55-9	DDE	608	0.1	< .10 ug/l	G or C	1/5 YR
50-29-3	DDT	608	0.1	< .10 ug/l	G or C	1/5 YR
8065-48-3	Demeton	(4)	(5)	< 1 ug/l	G or C	1/5 YR
333-41-5	Diazinon	(4)	(5)	< 1 ug/l	G or C	1/5 YR
60-57-1	Dieldrin	608	0.1	< .10 ug/l	G or C	1/5 YR
959-98-8	Alpha-Endosulfan	608	0.1	< .10 ug/l	G or C	1/5 YR
33213-65-9	Beta-Endosulfan	608	0.1	< .10 ug/l	G or C	1/5 YR
1031-07-8	Endosulfan Sulfate	608	0.1	< .10 ug/l	G or C	1/5 YR

CASRN#	CHEMICAL	EPA ANALYSIS NO.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENCY
72-20-8	Endrin	608	0.1	< .10 ug/l	G or C	1/5 YR
7421-93-4	Endrin Aldehyde	(4)	(5)	< .10 ug/l	G or C	1/5 YR
86-50-0	Guthion	622	(5)	< 1 ug/l	G or C	1/5 YR
76-44-8	Heptachlor	608	0.05	< .10 ug/l	G or C	1/5 YR
1024-57-3	Heptachlor Epoxide	(4)	(5)	< .10 ug/l	G or C	1/5 YR
319-84-6	Hexachlorocyclohexane Alpha-BHC	608	(5)	< .05 ug/l	G or C	1/5 YR
319-85-7	Hexachlorocyclohexane Beta-BHC	608	(5)	< .05 ug/l	G or C	1/5 YR
58-89-9	Hexachlorocyclohexane Gamma-BHC or Lindane	608	(5)	< .05 ug/l	G or C	1/5 YR
143-50-0	Kepone	(9)	(5)	< .10 ug/l	G or C	1/5 YR
121-75-5	Malathion	(4)	(5)	< 1 ug/l	G or C	1/5 YR
72-43-5	Methoxychlor	(4)	(5)	< .10 ug/l	G or C	1/5 YR
2385-85-5	Mirex	(4)	(5)	< .10 ug/l	G or C	1/5 YR
56-38-2	Parathion	(4)	(5)	< 1 ug/l	G or C	1/5 YR
1336-36-3	PCB Total	608	7.0	< 1.0 ug/l	G or C	1/5 YR
8001-35-2	Toxaphene	608	5.0	< 5.0 ug/l	G or C	1/5 YR
	BASE N	EUTRAL E	XTRACTA	BLES		
83-32-9	Acenaphthene	625	10.0	< 10 ug/l	G or C	1/5 YR
120-12-7	Anthracene	625	10.0	< 10 ug/l	G or C	1/5 YR
92-87-5	Benzidine	(4)	(5)	< 10 ug/l	G or C	1/5 YR
56-55-3	Benzo (a) anthracene	625	10.0	< 10 ug/l	G or C	1/5 YR
205-99-2	Benzo (b) fluoranthene	625	10.0	< 10 ug/l	G or C	1/5 YR
207-08-9	Benzo (k) fluoranthene	625	10.0	< 10 ug/l	G or C	1/5 YR
50-32-8	Benzo (a) pyrene	625	10.0	< 10 ug/l	G or C	1/5 YR
111-44-4	Bis 2-Chloroethyl Ether	(4)	(5)	< 10 ug/l	G or C	1/5 YR
108-60-1	Bis 2-Chloroisopropyl Ether	(4)	(5)	< 10 ug/l	G or C	1/5 YR
85-68-7	Butyl benzyl phthalate	625	10.0	< 10 ug/l	G or C	1/5 YR
91-58-7	2-Chloronaphthalene	(4)	(5)	< 10 ug/l	G or C	1/5 YR
218-01-9	Chrysene	625	10.0	< 10 ug/l	G or C	1/5 YR
53-70-3	Dibenz(a,h)anthracene	625	20.0	< 10 ug/l	G or C	1/5 YR

CASRN#	CHEMICAL	EPA ANALYSIS NO.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENCY
84-74-2	Dibutyl phthalate (synonym = Di-n-Butyl Phthalate)	625	10.0	< 10 ug/l	G or C	1/5 YR
95-50-1	1,2-Dichlorobenzene	624	10.0	< 5.0 ug/l	G or C	1/5 YR
541-73-1	1,3-Dichlorobenzene	624	10.0	< 5.0 ug/l	G or C	1/5 YR
106-46-7	1,4-Dichlorobenzene	624	10.0	< 5.0 ug/l	G or C	1/5 YR
91-94-1	3,3-Dichlorobenzidine	(4)	(5)	< 10 ug/l	G or C	1/5 YR
84-66-2	Diethyl phthalate	625	10.0	< 10 ug/l	G or C	1/5 YR
117-81-7	Bis-2-ethylhexyl phthalate	625	10.0	< 10 ug/l	G or C	1/5 YR
131-11-3	Dimethyl phthalate	(4)	(5)	< 10 ug/l	G or C	1/5 YR
121-14-2	2,4-Dinitrotoluene	625	10.0	< 10 ug/l	G or C	1/5 YR
122-66-7	1,2-Diphenylhydrazine	(4)	(5)	< 10 ug/l	G or C	1/5 YR
206-44-0	Fluoranthene	625	10.0	< 10 ug/l	G or C	1/5 YR
86-73-7	Fluorene	625	10.0	< 10 ug/l	G or C	1/5 YR
118-74-1	Hexachlorobenzene	(4)	(5)	< 10 ug/l	G or C	1/5 YR
87-68-3	Hexachlorobutadiene	(4)	(5)	< 10 ug/l	G or C	1/5 YR
77-47-4	Hexachlorocyclopentadiene	(4)	(5)	< 10 ug/l	G or C	1/5 YR
67-72-1	Hexachloroethane	(4)	(5)	< 10 ug/l	G or C	1/5 YR
193-39-5	Indeno(1,2,3-cd)pyrene	625	20.0	< 10 ug/l	G or C	1/5 YR
78-59-1	Isophorone	625	10.0	< 10 ug/l	G or C	1/5 YR
98-95-3	Nitrobenzene	625	10.0	< 10 ug/l	G or C	1/5 YR
62-75-9	N-Nitrosodimethylamine	(4)	(5)	< 10 ug/l	G or C	1/5 YR
621-64-7	N-Nitrosodi-n-propylamine	(4)	(5)	< 10 ug/l	G or C	1/5 YR
86-30-6	N-Nitrosodiphenylamine	(4)	(5)	< 10 ug/l	G or C	1/5 YR
129-00-0	Pyrene	625	10.0	< 10 ug/l	G or C	1/5 YR
120-82-1	1,2,4-Trichlorobenzene	625	10.0	< 10 ug/l	G or C	1/5 YR
		VOLAT	ILES	<u> </u>		5
107-02-8	Acrolein	(4)	(5)	< 5.0 ug/l	G	1/5 YR
107-13-1	Acrylonitrile	(4)	(5)	< 5.0 ug/i	G	1/5 YR
71-43-2	Benzene	624	10.0	< 5.0 ug/l	G	1/5 YR
75-25-2	Bromoform	624	10.0	< 5.0 ug/l	G	1/5 YR

CASRN#	CHEMICAL	EPA ANALYSIS NO.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENCY
56-23-5	Carbon Tetrachloride	624	10.0	< 5.0 ug/l	G	1/5 YR
108-90-7	Chlorobenzene (synonym = monochlorobenzene)	624	50.0	< 5.0 ug/l	G	1/5 YR
124-48-1	Chlorodibromomethane	624	10.0	< 5.0 ug/l	G	1/5 YR
67-66-3	Chloroform	624	10.0	< 5.0 ug/l	G	1/5 YR
75-09-2	Dichloromethane (synonym = methylene chloride)	624	20.0	< 5.0 ug/l	G	1/5 YR
75-27-4	Dichlorobromomethane	624	10.0	< 5.0 ug/l	G	1/5 YR
107-06-2	1,2-Dichloroethane	624	10.0	< 5.0 ug/l	G	1/5 YR
75-35-4	1,1-Dichloroethylene	624	10.0	< 5.0 ug/l	G	1/5 YR
156-60-5	1,2-trans-dichloroethylene	(4)	(5)	< 5.0 ug/l	G	1/5 YR
78-87-5	1,2-Dichloropropane	(4)	(5)	< 5.0 ug/l	G	1/5 YR
542-75-6	1,3-Dichloropropene	(4)	(5)	< 5.0 ug/l	G	1/5 YR
100-41-4	Ethylbenzene	624	10.0	< 5.0 ug/l	G	1/5 YR
74-83-9	Methyl Bromide	(4)	(5)	< 5.0 ug/l	G	1/5 YR
79-34-5	1,1,2,2-Tetrachloroethane	(4)	(5)	< 5.0 ug/l	G	1/5 YR
127-18-4	Tetrachloroethylene	624	10.0	< 5.0 ug/l	G	1/5 YR
10-88-3	Toluene	624	10.0	< 5.0 ug/l	G	1/5 YR
79-00-5	1,1,2-Trichloroethane	(4)	(5)	< 5.0 ug/l	G	1/5 YR
79-01-6	Trichloroethylene	624	10.0	< 5.0 ug/l	G	1/5 YR
75-01-4	Vinyl Chloride	624	10.0	< 5.0 ug/l	G	1/5 YR
		RADIONU	CLIDES			
	Uranium	(4)	(5)	0.00 +/- 0.00 pCi/L	G or C	1/5 YR
w	Combined Radium 226 and 228	(4)	(5)	0.20 +/- 0.52 pCi/L	G or C	1/5 YR
	Beta Particle & Photon Activity (mrem/yr)	(4)	(5)	46.3 +/- 1.7 pCi/L	G or C	1/5 YR
	Gross Alpha Particle Activity (pCi/L)	(4)	(5)	1.3 +/- 1.3 pCi/L	G or C	1/5 YR
	ACI	D EXTRAC	CTABLES (6		Language	
95-57-8	2-Chlorophenol	625	10.0	<10 ug/l	G or C	1/5 YR
120-83-2	2,4 Dichlorophenol	625	10.0	<10 ug/l	G or C	1/5 YR
105-67-9	2,4 Dimethylphenol	625	10.0	<10 ug/l	G or C	1/5 YR
51-28-5	2,4-Dinitrophenol	(4)	(5)	<10 ug/l	G or C	1/5 YR

CASRN#	CHEMICAL	EPA ANALYSIS NO.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENCY					
534-52-1	2-Methyl-4,6-Dinitrophenol	(4)	(5)	<10 ug/l	G or C	1/5 YR					
25154-52-3	Nonylphenol	(5)	(5)	<10 ug/l	G or C	1/5 YR					
87-86-5	Pentachlorophenol	625	50.0	<10 ug/l	G or C	1/5 YR					
108-95-2	Phenoi	625	10.0	<10 ug/l	G or C	1/5 YR					
88-06-2	2,4,6-Trichlorophenol	625	10.0	<10 ug/l	G or C	1/5 YR					
	MISCELLANEOUS										
776-41-7	Ammonia as NH3-N	350.1	200	0.79 mg/l	С	1/5 YR					
16887-00-6	Chlorides	(4)	(5)	168.6 mg/l	С	1/5 YR					
7782-50-5	Chlorine, Total Residual	(4)	100	< QL	G	1/5 YR					
57-12-5	Cyanide, Free	(4)	10.0	< 0.01 mg/ l	G	1/5 YR					
N/A	E. coli / Enterococcus (N/CML)	(4)	(5)	396.8 / 2.0 MPN/100ml	G	1/5 YR					
7783-06-4	Hydrogen Sulfide	(5)	(5)	.40 mg/l	G	1/5 YR					
60-10-5	Tributyltin (7)	NBSR 85-3295	(5)	< 30 ng/l	G or C	1/5 YR					
	Hardness (mg/L as CaCO₃)	(4) (5)		426 mg/l as CaCo₃	G or C (10)	1/5 YR					

Name of Principal Exec. Officer or Authorized Agent/Title

| Confex environmental ugr. 6/16/10

| Signature of Principal Officer or Authorized Agent/Date

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations. See 18 U.S.C. Sec. 1001 and 33 U.S.C. Sec. 1319. (Penalties under these statutes may include fines up to \$10,000 and or maximum imprisonment of between 6 months and 5 years.)

FOOTNOTES:

(1) Quantification level (QL) is defined as the lowest concentration used for the calibration of a measurement system when the calibration is in accordance with the procedures published for the required method.

The quantification levels indicated for the metals are actually Specific Target Values developed for this permit. The Specific Target Value is the approximate value that may initiate a wasteload allocation analysis. Target values are not wasteload allocations or effluent limitations. The Specific Target Values are subject to change based on additional information such as hardness data, receiving stream flow, and design flows.

Units for the quantification level are micrograms/liter unless otherwise specified.

Quality control and quality assurance information shall be submitted to document that the required quantification level has been attained.

(2) Sample Type

G = Grab = An individual sample collected in less than 15 minutes. Substances specified with "grab" sample type shall only be collected as grabs. The permittee may analyze multiple grabs and report the average results provided that the individual grab results are also reported. For grab metals samples, the individual samples shall be filtered and preserved immediately upon collection.

C = Composite = A 24-hour (PW - Revise as required to require same composite duration as BOD₅) composite unless otherwise specified. The composite shall be a combination of individual samples, taken proportional to flow, obtained at hourly or smaller time intervals. The individual samples may be of equal volume for flows that do not vary by +/- 10 percent over a 24-hour period.

(3) A specific analytical method is not specified; however a target value for each metal has been established. An appropriate method to meet the target value shall be selected from the following list of EPA methods (or any approved method presented in 40 CFR Part 136). If the test result is less than the method QL, a "<[QL]" shall be reported where the actual analytical test QL is substituted for [QL].

<u>Metal</u>	Analytical Method
Antimony	1638; 1639
Arsenic	206.5; 1632
Chromium ⁽⁸⁾	1639
Cadmium	1637; 1638; 1639; 1640
Chromium VI	218.6; 1639
Copper	1638; 1640
Lead	1637; 1638; 1640
Mercury	245.7; 1631
Nickel	1638; 1639; 1640
Selenium	1638; 1639
Silver	1638
Zinc	1638; 1639
	. • ↓ [#] ₹

- (4) Any approved method presented in 40 CFR Part 136.
- (5) The QL is at the discretion of the permittee. For any substances addressed in 40 CFR Part 136, the permittee shall use one of the approved methods in 40 CFR Part 136.
- (6) Testing for phenols requires continuous extraction.
- (7) Analytical Methods: NBSR 85-3295 or DEQ's approved analysis for Tributyltin may also be used [See A Manual for the Analysis of Butyltins in Environmental Systems by the Virginia Institute of Marine Science, dated November 1996].
- (8) Both Chromium III and Chromium VI may be measured by the total chromium analysis. If the result of the total chromium analysis is less than or equal to the lesser of the Chromium III or Chromium VI method QL, the results for both Chromium III and Chromium VI can be reported as "<[QL]", where the actual analytical test QL is substituted for [QL].
- (9) The lab may use SW846 Method 8270D provided the lab has an Initial Demonstration of Capability, has passed a PT for Kepone, and meets the acceptance criteria for Kepone as given in Method 8270D
- (10) The sample type for Hardness (as CaCO₃) shall match the sample type selected for Dissolved Metals.

DEPARTMENT OF ENVIRONMENTAL QUALITY WATER QUALITY CRITERIA MONITORING Additional Parameters (Pending Approval. . .)

CASRN#	CHEMICAL	EPA ANALYSIS NO.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENCY						
		META	\LS									
7782-49-2	Selenium, Total Recoverable	(3)	(Insert target value)	0.089 mg/l	G or C	1/5 YR						
	Р	ESTICIDE	S/PCB'S									
333-41-5	Diazinon	(5)	(5)	< 1 ug/l	G or C	1/5 YR						
	ACID EXTRACTABLES (6)											
25154-52-3	Nonylphenol	(5)	(5)	< 10 ug/l	G or C	1/5 YR						

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations. See 18 U.S.C. Sec. 1001 and 33 U.S.C. Sec. 1319. (Penalties under these statutes may include fines up to \$10,000 and or maximum imprisonment of between 6 months and 5 years.)

FOOTNOTES:

(1) Quantification level (QL) is defined as the lowest concentration used for the calibration of a measurement system when the calibration is in accordance with the procedures published for the required method.

The quantification levels indicated for the metals are actually Specific Target Values developed for this permit. The Specific Target Value is the approximate value that may initiate a wasteload allocation analysis. Target values are not wasteload allocations or effluent limitations. The Specific Target Values are subject to change based on additional information such as hardness data, receiving stream flow, and design flows.

Units for the quantification level are micrograms/liter unless otherwise specified.

Quality control and quality assurance information shall be submitted to document that the required quantification level has been attained.

(2) Sample Type

G = Grab = An individual sample collected in less than 15 minutes. Substances specified with "grab" sample type shall only be collected as grabs. The permittee may analyze multiple grabs and report

the average results provided that the individual grab results are also reported. For grab metals samples, the individual samples shall be filtered and preserved immediately upon collection.

C = Composite = A 24-hour (PW - Revise as required to require same composite duration as BOD_5) composite unless otherwise specified. The composite shall be a combination of individual samples, taken proportional to flow, obtained at hourly or smaller time intervals. The individual samples may be of equal volume for flows that do not vary by +/- 10 percent over a 24-hour period.

(3) A specific analytical method is not specified; however a target value for each metal has been established. An appropriate method to meet the target value shall be selected from the following list of EPA methods (or any approved method presented in 40 CFR Part 136). If the test result is less than the method QL, a "<[QL]" shall be reported where the actual analytical test QL is substituted for [QL].

MetalAnalytical MethodSelenium1638; 1639

- (4) Any approved method presented in 40 CFR Part 136.
- (5) The QL is at the discretion of the permittee. For any substances addressed in 40 CFR Part 136, the permittee shall use one of the approved methods in 40 CFR Part 136.
- (6) Testing for phenols requires continuous extraction.

Outfall 001	Flo	ow	р	Н	i i	3OD₅		Total Sus	pended So	ids (TSS)	
	(MC	GD)	(S	U)	(kg/d)	(mg	/L)	(kg/d)	(mg	/L)	
Due Date	MO AVG	MAX	MIN	MAX	MO AVG	MO AVG	MAX	MO AVG	MO AVG	MAX	
10-Jun-2010	0.757	1.18	6.3	7.6	<ql< td=""><td><ql< td=""><td><ql< td=""><td>5.01</td><td>1.9</td><td>3.4</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>5.01</td><td>1.9</td><td>3.4</td><td></td></ql<></td></ql<>	<ql< td=""><td>5.01</td><td>1.9</td><td>3.4</td><td></td></ql<>	5.01	1.9	3.4	
10-Jul-2010	0.702	1.389	6.5	7.2	0.9	0.9	5.5	5.23	2.3	4.9	
10-Aug-2010	0.84	1.614	6.7	8.2	<ql< td=""><td><ql< td=""><td><ql< td=""><td>10.71</td><td>3.6</td><td>4.9</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>10.71</td><td>3.6</td><td>4.9</td><td></td></ql<></td></ql<>	<ql< td=""><td>10.71</td><td>3.6</td><td>4.9</td><td></td></ql<>	10.71	3.6	4.9	
10-Sep-2010	0.67	1.325	6.5	7.6	<ql< td=""><td><ql< td=""><td><ql< td=""><td>7.77</td><td>3</td><td>4.4</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>7.77</td><td>3</td><td>4.4</td><td></td></ql<></td></ql<>	<ql< td=""><td>7.77</td><td>3</td><td>4.4</td><td></td></ql<>	7.77	3	4.4	
10-Oct-2010	0.777	1.591	6.3	7.7	<ql< td=""><td><ql< td=""><td><ql< td=""><td>15.03</td><td>4.8</td><td>21.5</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>15.03</td><td>4.8</td><td>21.5</td><td></td></ql<></td></ql<>	<ql< td=""><td>15.03</td><td>4.8</td><td>21.5</td><td></td></ql<>	15.03	4.8	21.5	
10-Nov-10	0.793	1.969	6.1	7.6	<ql< td=""><td><ql< td=""><td><ql< td=""><td>6.46</td><td>2.1</td><td>4.9</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>6.46</td><td>2.1</td><td>4.9</td><td></td></ql<></td></ql<>	<ql< td=""><td>6.46</td><td>2.1</td><td>4.9</td><td></td></ql<>	6.46	2.1	4.9	
10-Dec-10	0.742	1.887	6.4	7.1	1.25	0.4	5.1	9.2	2.9	5	
10-Jan-11	0.822	1.743	6.1	8.9	10.13	3.1	6.4	16.31	5	6.1	
10-Feb-11	0.902	1.936	6.3	7.8	1.71	0.6	5.2	7.67	2.6	5.1	
10-Mar-11	0.735	1.304	6.6	7.6	<ql< td=""><td><ql< td=""><td><ql< td=""><td>8.93</td><td>3</td><td>4.6</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>8.93</td><td>3</td><td>4.6</td><td></td></ql<></td></ql<>	<ql< td=""><td>8.93</td><td>3</td><td>4.6</td><td></td></ql<>	8.93	3	4.6	
10-Apr-11	1.034	1.937	6.5	7.2	3.42	0.8	5.5	15.72	3.8	5.5	
10-May-11	0.857	1.543	6.4	8.5	1.96	0.5	5.6	15.58	4	5.5	
10-Jun-11	0.777	1.519	6.9	7.6	<ql< td=""><td><ql< td=""><td><ql< td=""><td>9.65</td><td>3</td><td>4.7</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>9.65</td><td>3</td><td>4.7</td><td></td></ql<></td></ql<>	<ql< td=""><td>9.65</td><td>3</td><td>4.7</td><td></td></ql<>	9.65	3	4.7	
10-Jul-11	0.696	1.998	7.1	8.9	<ql< td=""><td><ql< td=""><td><ql< td=""><td>8.5</td><td>3</td><td>6.2</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>8.5</td><td>3</td><td>6.2</td><td></td></ql<></td></ql<>	<ql< td=""><td>8.5</td><td>3</td><td>6.2</td><td></td></ql<>	8.5	3	6.2	
10-Aug-11	0.691	1.072	6.1	8.25	<ql< td=""><td><ql< td=""><td><ql< td=""><td>6.36</td><td>2.5</td><td>4.1</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>6.36</td><td>2.5</td><td>4.1</td><td></td></ql<></td></ql<>	<ql< td=""><td>6.36</td><td>2.5</td><td>4.1</td><td></td></ql<>	6.36	2.5	4.1	
10-Sep-11	0.798	1.275	6.3	7.8	<ql< td=""><td><ql< td=""><td><ql< td=""><td>8.99</td><td>2.6</td><td>5.4</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>8.99</td><td>2.6</td><td>5.4</td><td></td></ql<></td></ql<>	<ql< td=""><td>8.99</td><td>2.6</td><td>5.4</td><td></td></ql<>	8.99	2.6	5.4	
10-Oct-11	0.812	1.43	6.4	8	<ql< td=""><td><ql< td=""><td><ql< td=""><td>10.78</td><td>3.2</td><td>7</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>10.78</td><td>3.2</td><td>7</td><td></td></ql<></td></ql<>	<ql< td=""><td>10.78</td><td>3.2</td><td>7</td><td></td></ql<>	10.78	3.2	7	
10-Nov-11	0.752	1.511	6.2	7.5	3.07	0.877	5.7	6.47	2	4.8	
10-Dec-11	0.748	1.429	5.2	6.6	3.48	1.3	5.8	10.47	3.9	6.8	
10-Jan-12	0.841	2.69	5.17	7.5	3.68	1.1	6.8	7.55	2.3	4.8	
10-Feb-12	0.632	1.21	6.03	7.4	6.59	2.22	8.4	6.29	2.1	3.6	
10-Mar-12	0.822	2.209	6.57	7.17	4.09	1.21	4.8	6.01	1.78	3.2	
10-Apr-12	0.687	1.044	6.13	7.11	6.11	1.94	6.7	5.71	1.95	3	
10-May-12	0.563	0.852	6.03	7.4	0.84	0.41	4.9	3.29	1.34	2	
10-Jun-12	0.613	0.939	6.54	7.19	2.5	0.86	5.9	3.7	1.32	2.3	
10-Jul-12	0.53	0.854	6.98	7.39	1.2	0.65	8.4	2.69	1.34	2.5	
10-Aug-12	0.497	0.79	6.43	7.54	1.83	0.93	4.3	3.16	1.6	3.4	
10-Sep-12	0.542	0.795	7.01	7.62	<ql< td=""><td><ql< td=""><td><ql< td=""><td>4.7</td><td>2.19</td><td>4.6</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>4.7</td><td>2.19</td><td>4.6</td><td></td></ql<></td></ql<>	<ql< td=""><td>4.7</td><td>2.19</td><td>4.6</td><td></td></ql<>	4.7	2.19	4.6	
10-Oct-12	0.49	0.697	7.1	7.63	<ql< td=""><td><ql< td=""><td><ql< td=""><td>2.63</td><td>1.98</td><td>14.3</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>2.63</td><td>1.98</td><td>14.3</td><td></td></ql<></td></ql<>	<ql< td=""><td>2.63</td><td>1.98</td><td>14.3</td><td></td></ql<>	2.63	1.98	14.3	
10-Nov-12	0.494	0.782	6.48	7.68	<ql< td=""><td><ql< td=""><td><ql< td=""><td>2.45</td><td>1.32</td><td>11.9</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>2.45</td><td>1.32</td><td>11.9</td><td></td></ql<></td></ql<>	<ql< td=""><td>2.45</td><td>1.32</td><td>11.9</td><td></td></ql<>	2.45	1.32	11.9	
10-Dec-12	0.558	0.719	6.64	7.1	4.51	1.82	5.7	8.03	3.31	6.8	
10-Jan-13	0.529	0.746	6.52	7.17	1.03	0.47	2.9	4.3	1.68	7.3	
10-Feb-13	0.578	0.874	6.74	7.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td>4.01</td><td>1.69</td><td>2.8</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>4.01</td><td>1.69</td><td>2.8</td><td></td></ql<></td></ql<>	<ql< td=""><td>4.01</td><td>1.69</td><td>2.8</td><td></td></ql<>	4.01	1.69	2.8	
10-Mar-13	0.64	1	6.43	7.14	<ql< td=""><td><ql< td=""><td><ql< td=""><td>3.89</td><td>1.48</td><td>3.9</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>3.89</td><td>1.48</td><td>3.9</td><td></td></ql<></td></ql<>	<ql< td=""><td>3.89</td><td>1.48</td><td>3.9</td><td></td></ql<>	3.89	1.48	3.9	

10-Apr-13	0.669	0.963	6.5	7.28	QL <	<ql< td=""><td><ql< td=""><td>109.29</td><td>46.92</td><td>575</td><td></td></ql<></td></ql<>	<ql< td=""><td>109.29</td><td>46.92</td><td>575</td><td></td></ql<>	109.29	46.92	575	
10-May-13	0.644	0.932	6.39	7.08	<ql< td=""><td><ql< td=""><td><ql< td=""><td>5.26</td><td>1.93</td><td>4.2</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>5.26</td><td>1.93</td><td>4.2</td><td></td></ql<></td></ql<>	<ql< td=""><td>5.26</td><td>1.93</td><td>4.2</td><td></td></ql<>	5.26	1.93	4.2	
AVG	0.701	1.326	6.41	7.57	1.6	0.6	2.9	10.2	3.8	21.4	
90th percentile	0.841	1.953	6.94	8.23	4.3	1.6	6.6	15.3	4.0	9.6	
10th percentile	0.530	0.786	6.07	7.11	<ql< td=""><td><ql< td=""><td><ql< td=""><td>3.2</td><td>1.4</td><td>2.9</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>3.2</td><td>1.4</td><td>2.9</td><td></td></ql<></td></ql<>	<ql< td=""><td>3.2</td><td>1.4</td><td>2.9</td><td></td></ql<>	3.2	1.4	2.9	
Minimum	0.490	0.697	5.17	6.60	<ql< td=""><td><ql< td=""><td><ql< td=""><td>2.5</td><td>1.3</td><td>2.0</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>2.5</td><td>1.3</td><td>2.0</td><td></td></ql<></td></ql<>	<ql< td=""><td>2.5</td><td>1.3</td><td>2.0</td><td></td></ql<>	2.5	1.3	2.0	
Maximum	1.034	2.690	7.10	8.90	10.1	3.1	8.4	109.3	46.9	575.0	

TF	RC	Fecal C	oliform	DO		Total	Photphorus	s (TP)		
(µg	/L)	(#/10	0ml)	(mg/L)	(kg	/d)	(mg	_J /L)	(kg/cal Y)	
MO AVG	MAX	MO AVG	MAX	MIN	MO AVG	MAX	MO AVG	MAX	MAX	
<ql< td=""><td><ql< td=""><td>1</td><td>2</td><td>7.4</td><td>0.05</td><td>1.03</td><td>0.02</td><td>0.23</td><td>49</td><td></td></ql<></td></ql<>	<ql< td=""><td>1</td><td>2</td><td>7.4</td><td>0.05</td><td>1.03</td><td>0.02</td><td>0.23</td><td>49</td><td></td></ql<>	1	2	7.4	0.05	1.03	0.02	0.23	49	
<ql< td=""><td><ql< td=""><td>8</td><td>8</td><td>8.09</td><td>0.29</td><td>1.24</td><td>0.13</td><td>0.39</td><td>58</td><td></td></ql<></td></ql<>	<ql< td=""><td>8</td><td>8</td><td>8.09</td><td>0.29</td><td>1.24</td><td>0.13</td><td>0.39</td><td>58</td><td></td></ql<>	8	8	8.09	0.29	1.24	0.13	0.39	58	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>6.43</td><td>0.34</td><td>1.77</td><td>0.11</td><td>0.32</td><td>68</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>6.43</td><td>0.34</td><td>1.77</td><td>0.11</td><td>0.32</td><td>68</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>6.43</td><td>0.34</td><td>1.77</td><td>0.11</td><td>0.32</td><td>68</td><td></td></ql<></td></ql<>	<ql< td=""><td>6.43</td><td>0.34</td><td>1.77</td><td>0.11</td><td>0.32</td><td>68</td><td></td></ql<>	6.43	0.34	1.77	0.11	0.32	68	
<ql< td=""><td><ql< td=""><td>4.5</td><td>9</td><td>5.24</td><td>0.51</td><td>1.89</td><td>0.2</td><td>0.48</td><td>84</td><td></td></ql<></td></ql<>	<ql< td=""><td>4.5</td><td>9</td><td>5.24</td><td>0.51</td><td>1.89</td><td>0.2</td><td>0.48</td><td>84</td><td></td></ql<>	4.5	9	5.24	0.51	1.89	0.2	0.48	84	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>6.63</td><td>1.5</td><td>3.61</td><td>0.51</td><td>1.1</td><td>130</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>6.63</td><td>1.5</td><td>3.61</td><td>0.51</td><td>1.1</td><td>130</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>6.63</td><td>1.5</td><td>3.61</td><td>0.51</td><td>1.1</td><td>130</td><td></td></ql<></td></ql<>	<ql< td=""><td>6.63</td><td>1.5</td><td>3.61</td><td>0.51</td><td>1.1</td><td>130</td><td></td></ql<>	6.63	1.5	3.61	0.51	1.1	130	
<ql< td=""><td><ql< td=""><td>1.33</td><td>4</td><td>6.94</td><td>0.33</td><td>1.64</td><td>0.11</td><td>0.42</td><td>140</td><td></td></ql<></td></ql<>	<ql< td=""><td>1.33</td><td>4</td><td>6.94</td><td>0.33</td><td>1.64</td><td>0.11</td><td>0.42</td><td>140</td><td></td></ql<>	1.33	4	6.94	0.33	1.64	0.11	0.42	140	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>7.59</td><td>0.41</td><td>2</td><td>0.13</td><td>0.44</td><td>152</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>7.59</td><td>0.41</td><td>2</td><td>0.13</td><td>0.44</td><td>152</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>7.59</td><td>0.41</td><td>2</td><td>0.13</td><td>0.44</td><td>152</td><td></td></ql<></td></ql<>	<ql< td=""><td>7.59</td><td>0.41</td><td>2</td><td>0.13</td><td>0.44</td><td>152</td><td></td></ql<>	7.59	0.41	2	0.13	0.44	152	
<ql< td=""><td><ql< td=""><td>8</td><td>30</td><td>7.58</td><td>0.7</td><td>1.98</td><td>0.22</td><td>0.38</td><td>17.4</td><td></td></ql<></td></ql<>	<ql< td=""><td>8</td><td>30</td><td>7.58</td><td>0.7</td><td>1.98</td><td>0.22</td><td>0.38</td><td>17.4</td><td></td></ql<>	8	30	7.58	0.7	1.98	0.22	0.38	17.4	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>6.28</td><td>0.35</td><td>1.46</td><td>0.12</td><td>0.38</td><td>8</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>6.28</td><td>0.35</td><td>1.46</td><td>0.12</td><td>0.38</td><td>8</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>6.28</td><td>0.35</td><td>1.46</td><td>0.12</td><td>0.38</td><td>8</td><td></td></ql<></td></ql<>	<ql< td=""><td>6.28</td><td>0.35</td><td>1.46</td><td>0.12</td><td>0.38</td><td>8</td><td></td></ql<>	6.28	0.35	1.46	0.12	0.38	8	
<ql< td=""><td><ql< td=""><td>3.25</td><td>13</td><td>6.68</td><td>0.37</td><td>1.21</td><td>0.12</td><td>0.32</td><td>NA</td><td></td></ql<></td></ql<>	<ql< td=""><td>3.25</td><td>13</td><td>6.68</td><td>0.37</td><td>1.21</td><td>0.12</td><td>0.32</td><td>NA</td><td></td></ql<>	3.25	13	6.68	0.37	1.21	0.12	0.32	NA	
<ql< td=""><td><ql< td=""><td>1.2</td><td>4</td><td>7.23</td><td>1.08</td><td>1.39</td><td>0.25</td><td>0.497</td><td>33</td><td></td></ql<></td></ql<>	<ql< td=""><td>1.2</td><td>4</td><td>7.23</td><td>1.08</td><td>1.39</td><td>0.25</td><td>0.497</td><td>33</td><td></td></ql<>	1.2	4	7.23	1.08	1.39	0.25	0.497	33	
<ql< td=""><td><ql< td=""><td>1</td><td>2</td><td>6.84</td><td>1.02</td><td>2.9</td><td>0.26</td><td>0.43</td><td>57</td><td></td></ql<></td></ql<>	<ql< td=""><td>1</td><td>2</td><td>6.84</td><td>1.02</td><td>2.9</td><td>0.26</td><td>0.43</td><td>57</td><td></td></ql<>	1	2	6.84	1.02	2.9	0.26	0.43	57	
<ql< td=""><td><ql< td=""><td>1.5</td><td>4</td><td>6</td><td>0.92</td><td>2.32</td><td>0.29</td><td>0.49</td><td>86</td><td></td></ql<></td></ql<>	<ql< td=""><td>1.5</td><td>4</td><td>6</td><td>0.92</td><td>2.32</td><td>0.29</td><td>0.49</td><td>86</td><td></td></ql<>	1.5	4	6	0.92	2.32	0.29	0.49	86	
<ql< td=""><td><ql< td=""><td>28.8</td><td>90</td><td>5.62</td><td>0.69</td><td>2.19</td><td>0.24</td><td>0.47</td><td>104</td><td></td></ql<></td></ql<>	<ql< td=""><td>28.8</td><td>90</td><td>5.62</td><td>0.69</td><td>2.19</td><td>0.24</td><td>0.47</td><td>104</td><td></td></ql<>	28.8	90	5.62	0.69	2.19	0.24	0.47	104	
<ql< td=""><td><ql< td=""><td>9.5</td><td>17</td><td>5.47</td><td>0.16</td><td>1.23</td><td>0.06</td><td>0.31</td><td>108</td><td></td></ql<></td></ql<>	<ql< td=""><td>9.5</td><td>17</td><td>5.47</td><td>0.16</td><td>1.23</td><td>0.06</td><td>0.31</td><td>108</td><td></td></ql<>	9.5	17	5.47	0.16	1.23	0.06	0.31	108	
<ql< td=""><td><ql< td=""><td>121</td><td>300</td><td>7.9</td><td>0.2</td><td>0.9</td><td>0.06</td><td>0.19</td><td>113</td><td></td></ql<></td></ql<>	<ql< td=""><td>121</td><td>300</td><td>7.9</td><td>0.2</td><td>0.9</td><td>0.06</td><td>0.19</td><td>113</td><td></td></ql<>	121	300	7.9	0.2	0.9	0.06	0.19	113	
<ql< td=""><td><ql< td=""><td>36</td><td>140</td><td>7.56</td><td>0.83</td><td>1.92</td><td>0.24</td><td>0.47</td><td>138</td><td></td></ql<></td></ql<>	<ql< td=""><td>36</td><td>140</td><td>7.56</td><td>0.83</td><td>1.92</td><td>0.24</td><td>0.47</td><td>138</td><td></td></ql<>	36	140	7.56	0.83	1.92	0.24	0.47	138	
<ql< td=""><td><ql< td=""><td>0.5</td><td>2</td><td>6.11</td><td>0.7</td><td>0.93</td><td>0.12</td><td>0.21</td><td>150</td><td></td></ql<></td></ql<>	<ql< td=""><td>0.5</td><td>2</td><td>6.11</td><td>0.7</td><td>0.93</td><td>0.12</td><td>0.21</td><td>150</td><td></td></ql<>	0.5	2	6.11	0.7	0.93	0.12	0.21	150	
<ql< td=""><td><ql< td=""><td>40.8</td><td>130</td><td>7.46</td><td>0.5</td><td>1.84</td><td>0.18</td><td>0.34</td><td>163</td><td></td></ql<></td></ql<>	<ql< td=""><td>40.8</td><td>130</td><td>7.46</td><td>0.5</td><td>1.84</td><td>0.18</td><td>0.34</td><td>163</td><td></td></ql<>	40.8	130	7.46	0.5	1.84	0.18	0.34	163	
1	16	5.67	17	8.17	0.7	1.95	0.21	0.49	181.9	
<ql< td=""><td><ql< td=""><td>87.5</td><td>350</td><td>6.26</td><td>0.42</td><td>0.71</td><td>0.14</td><td>0.19</td><td>13</td><td></td></ql<></td></ql<>	<ql< td=""><td>87.5</td><td>350</td><td>6.26</td><td>0.42</td><td>0.71</td><td>0.14</td><td>0.19</td><td>13</td><td></td></ql<>	87.5	350	6.26	0.42	0.71	0.14	0.19	13	
<ql< td=""><td><ql< td=""><td>34</td><td>170</td><td>8.61</td><td>0.77</td><td>1.86</td><td>0.22</td><td>0.31</td><td>35</td><td></td></ql<></td></ql<>	<ql< td=""><td>34</td><td>170</td><td>8.61</td><td>0.77</td><td>1.86</td><td>0.22</td><td>0.31</td><td>35</td><td></td></ql<>	34	170	8.61	0.77	1.86	0.22	0.31	35	
<ql< td=""><td><ql< td=""><td>2</td><td>4</td><td>8.05</td><td>0.62</td><td>1.5</td><td>0.23</td><td>0.47</td><td>54.41</td><td></td></ql<></td></ql<>	<ql< td=""><td>2</td><td>4</td><td>8.05</td><td>0.62</td><td>1.5</td><td>0.23</td><td>0.47</td><td>54.41</td><td></td></ql<>	2	4	8.05	0.62	1.5	0.23	0.47	54.41	
<ql< td=""><td><ql< td=""><td>2</td><td>4</td><td>8.04</td><td>0.2</td><td>0.33</td><td>0.08</td><td>0.13</td><td>60.44</td><td></td></ql<></td></ql<>	<ql< td=""><td>2</td><td>4</td><td>8.04</td><td>0.2</td><td>0.33</td><td>0.08</td><td>0.13</td><td>60.44</td><td></td></ql<>	2	4	8.04	0.2	0.33	0.08	0.13	60.44	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>7.73</td><td>0.2</td><td>0.35</td><td>0.08</td><td>0.11</td><td>67.06</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>7.73</td><td>0.2</td><td>0.35</td><td>0.08</td><td>0.11</td><td>67.06</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>7.73</td><td>0.2</td><td>0.35</td><td>0.08</td><td>0.11</td><td>67.06</td><td></td></ql<></td></ql<>	<ql< td=""><td>7.73</td><td>0.2</td><td>0.35</td><td>0.08</td><td>0.11</td><td>67.06</td><td></td></ql<>	7.73	0.2	0.35	0.08	0.11	67.06	
<ql< td=""><td><ql< td=""><td>1</td><td>2</td><td>7.79</td><td>0.36</td><td>0.67</td><td>0.17</td><td>0.3</td><td>77.65</td><td></td></ql<></td></ql<>	<ql< td=""><td>1</td><td>2</td><td>7.79</td><td>0.36</td><td>0.67</td><td>0.17</td><td>0.3</td><td>77.65</td><td></td></ql<>	1	2	7.79	0.36	0.67	0.17	0.3	77.65	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>7.21</td><td>0.4</td><td>0.69</td><td>0.2</td><td>0.29</td><td>90.13</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>7.21</td><td>0.4</td><td>0.69</td><td>0.2</td><td>0.29</td><td>90.13</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>7.21</td><td>0.4</td><td>0.69</td><td>0.2</td><td>0.29</td><td>90.13</td><td></td></ql<></td></ql<>	<ql< td=""><td>7.21</td><td>0.4</td><td>0.69</td><td>0.2</td><td>0.29</td><td>90.13</td><td></td></ql<>	7.21	0.4	0.69	0.2	0.29	90.13	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>6.74</td><td>0.44</td><td>0.71</td><td>0.21</td><td>0.4</td><td>103.64</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>6.74</td><td>0.44</td><td>0.71</td><td>0.21</td><td>0.4</td><td>103.64</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>6.74</td><td>0.44</td><td>0.71</td><td>0.21</td><td>0.4</td><td>103.64</td><td></td></ql<></td></ql<>	<ql< td=""><td>6.74</td><td>0.44</td><td>0.71</td><td>0.21</td><td>0.4</td><td>103.64</td><td></td></ql<>	6.74	0.44	0.71	0.21	0.4	103.64	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>6.69</td><td>0.44</td><td>0.77</td><td>0.24</td><td>0.79</td><td>116.75</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>6.69</td><td>0.44</td><td>0.77</td><td>0.24</td><td>0.79</td><td>116.75</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>6.69</td><td>0.44</td><td>0.77</td><td>0.24</td><td>0.79</td><td>116.75</td><td></td></ql<></td></ql<>	<ql< td=""><td>6.69</td><td>0.44</td><td>0.77</td><td>0.24</td><td>0.79</td><td>116.75</td><td></td></ql<>	6.69	0.44	0.77	0.24	0.79	116.75	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>7.03</td><td>0.41</td><td>1.25</td><td>0.2</td><td>0.75</td><td>129.33</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>7.03</td><td>0.41</td><td>1.25</td><td>0.2</td><td>0.75</td><td>129.33</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>7.03</td><td>0.41</td><td>1.25</td><td>0.2</td><td>0.75</td><td>129.33</td><td></td></ql<></td></ql<>	<ql< td=""><td>7.03</td><td>0.41</td><td>1.25</td><td>0.2</td><td>0.75</td><td>129.33</td><td></td></ql<>	7.03	0.41	1.25	0.2	0.75	129.33	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>7.29</td><td>0.28</td><td>0.56</td><td>0.12</td><td>0.22</td><td>137.85</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>7.29</td><td>0.28</td><td>0.56</td><td>0.12</td><td>0.22</td><td>137.85</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>7.29</td><td>0.28</td><td>0.56</td><td>0.12</td><td>0.22</td><td>137.85</td><td></td></ql<></td></ql<>	<ql< td=""><td>7.29</td><td>0.28</td><td>0.56</td><td>0.12</td><td>0.22</td><td>137.85</td><td></td></ql<>	7.29	0.28	0.56	0.12	0.22	137.85	
<ql< td=""><td><ql< td=""><td>22</td><td>22</td><td>5.25</td><td>0.18</td><td>0.34</td><td>0.07</td><td>0.14</td><td>143.38</td><td></td></ql<></td></ql<>	<ql< td=""><td>22</td><td>22</td><td>5.25</td><td>0.18</td><td>0.34</td><td>0.07</td><td>0.14</td><td>143.38</td><td></td></ql<>	22	22	5.25	0.18	0.34	0.07	0.14	143.38	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>6.53</td><td>0.3</td><td>0.55</td><td>0.13</td><td>0.2</td><td>9.21</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>6.53</td><td>0.3</td><td>0.55</td><td>0.13</td><td>0.2</td><td>9.21</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>6.53</td><td>0.3</td><td>0.55</td><td>0.13</td><td>0.2</td><td>9.21</td><td></td></ql<></td></ql<>	<ql< td=""><td>6.53</td><td>0.3</td><td>0.55</td><td>0.13</td><td>0.2</td><td>9.21</td><td></td></ql<>	6.53	0.3	0.55	0.13	0.2	9.21	
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>9.25</td><td>0.58</td><td>0.87</td><td>0.23</td><td>0.34</td><td>24.64</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>9.25</td><td>0.58</td><td>0.87</td><td>0.23</td><td>0.34</td><td>24.64</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>9.25</td><td>0.58</td><td>0.87</td><td>0.23</td><td>0.34</td><td>24.64</td><td></td></ql<></td></ql<>	<ql< td=""><td>9.25</td><td>0.58</td><td>0.87</td><td>0.23</td><td>0.34</td><td>24.64</td><td></td></ql<>	9.25	0.58	0.87	0.23	0.34	24.64	

	<ql< th=""><th><ql< th=""><th><ql< th=""><th><ql< th=""><th>8.71</th><th>0.61</th><th>0.95</th><th>0.22</th><th>0.34</th><th>43.49</th><th></th></ql<></th></ql<></th></ql<></th></ql<>	<ql< th=""><th><ql< th=""><th><ql< th=""><th>8.71</th><th>0.61</th><th>0.95</th><th>0.22</th><th>0.34</th><th>43.49</th><th></th></ql<></th></ql<></th></ql<>	<ql< th=""><th><ql< th=""><th>8.71</th><th>0.61</th><th>0.95</th><th>0.22</th><th>0.34</th><th>43.49</th><th></th></ql<></th></ql<>	<ql< th=""><th>8.71</th><th>0.61</th><th>0.95</th><th>0.22</th><th>0.34</th><th>43.49</th><th></th></ql<>	8.71	0.61	0.95	0.22	0.34	43.49	
	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>8.04</td><td>0.37</td><td>0.55</td><td>0.15</td><td>0.28</td><td>54.54</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>8.04</td><td>0.37</td><td>0.55</td><td>0.15</td><td>0.28</td><td>54.54</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>8.04</td><td>0.37</td><td>0.55</td><td>0.15</td><td>0.28</td><td>54.54</td><td></td></ql<></td></ql<>	<ql< td=""><td>8.04</td><td>0.37</td><td>0.55</td><td>0.15</td><td>0.28</td><td>54.54</td><td></td></ql<>	8.04	0.37	0.55	0.15	0.28	54.54	
AVG	0.03	0.44	12	37	7.12	0.51	1.34	0.17	0.38	85.7	
90th percentile	<ql< td=""><td><ql< td=""><td>35</td><td>135</td><td>8.13</td><td>0.88</td><td>2.10</td><td>0.25</td><td>0.49</td><td>147.4</td><td></td></ql<></td></ql<>	<ql< td=""><td>35</td><td>135</td><td>8.13</td><td>0.88</td><td>2.10</td><td>0.25</td><td>0.49</td><td>147.4</td><td></td></ql<>	35	135	8.13	0.88	2.10	0.25	0.49	147.4	
10th percentile	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>5.81</td><td>0.20</td><td>0.55</td><td>0.08</td><td>0.19</td><td>20.3</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>5.81</td><td>0.20</td><td>0.55</td><td>0.08</td><td>0.19</td><td>20.3</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>5.81</td><td>0.20</td><td>0.55</td><td>0.08</td><td>0.19</td><td>20.3</td><td></td></ql<></td></ql<>	<ql< td=""><td>5.81</td><td>0.20</td><td>0.55</td><td>0.08</td><td>0.19</td><td>20.3</td><td></td></ql<>	5.81	0.20	0.55	0.08	0.19	20.3	
Minimum	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>5.24</td><td>0.05</td><td>0.33</td><td>0.02</td><td>0.11</td><td>8.0</td><td>·</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>5.24</td><td>0.05</td><td>0.33</td><td>0.02</td><td>0.11</td><td>8.0</td><td>·</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>5.24</td><td>0.05</td><td>0.33</td><td>0.02</td><td>0.11</td><td>8.0</td><td>·</td></ql<></td></ql<>	<ql< td=""><td>5.24</td><td>0.05</td><td>0.33</td><td>0.02</td><td>0.11</td><td>8.0</td><td>·</td></ql<>	5.24	0.05	0.33	0.02	0.11	8.0	·
Maximum	1.00	16.00	121	350	9.25	1.50	3.61	0.51	1.10	181.9	

		Total Nitre	ogen (TN)			Ammor	nia (NH ₃)		TH	(N	
	(kg/	/d)	(mg	_J /L)	(kg	/d)	(mg	/L)	(kg/d)	(mg/L)	
M	O AVG	MAX	MO AVG	MAX	MO AVG	MAX	MO AVG	MAX	MO AVG	MO AVG	
	7.86	15.72	2.32	4.64	1.98	5.94	0.7	1.33	1.64	1.34	
	4.9	9.8	2.92	4.84	1.64	4.01	0.7	1.26	0.53	0.66	
•	12.16	14.36	3.54	3.59	5.25	32.22	1.8	5.76	2.24	1.46	
2	21.97	37.58	11.06	19.62	2.54	15.88	1	4	0.85	0.84	
	107	131	36	43	1.21	1.85	0.4	0.54	<ql< td=""><td><ql< td=""><td></td></ql<></td></ql<>	<ql< td=""><td></td></ql<>	
4	43.47	84.76	15.36	30.1	<1.52	<1.95	<.5	<.5	0.35	0.25	
•	17.68	32.85	5.77	12.6	2.24	10.9	0.7	2.41	6.18	1.93	
	9.93	21.78	3.12	6.6	4.61	18.16	1.4	3.51	5.71	2.28	
•	10.73	17.03	3.87	6.18	2.06	5.93	0.7	1.55	2.1	0.73	
,	17.67	25.32	5.75	6.92	<1.5	<1.9	<0.5	<0.5	4.64	1.48	
•	12.21	27.41	2.44	4.2	3.82	36	0.9	4.91	8.44	1.54	
2	20.59	45.12	4.7	8.89	4.12	18.97	1.1	5.69	5.51	1.37	
,	17.68	5.42	5.42	13.23	5.64	21.53	1.8	4.54	2.95	1.14	
•	18.28	43.05	6.33	12.5	2.87	24.73	1	4.54	5.04	1.85	
	3.97	8.9	1.94	4.38	2.26	12.3	0.9	3.1	1.44	0.84	
	32.35	45.85	9.85	11.97	<1.71	<2.14	<0.5	<0.5	2.29	0.65	
2	24.03	30.31	7.48	8.96	<1.42	<2.06	<0.04	<0.5	4.12	1.66	
	29.93	43.09	8.65	10.79	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>1.05</td><td>0.47</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>1.05</td><td>0.47</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>1.05</td><td>0.47</td><td></td></ql<></td></ql<>	<ql< td=""><td>1.05</td><td>0.47</td><td></td></ql<>	1.05	0.47	
2	23.23	43.27	6.59	11.56	0.51	5.63	0.2	1.04	4.14	1.02	
2	20.24	36.27	6.12	11.56	0.69	9.252	0.2	2.31	1.5	0.8	
	8.46	42.32	7.09	14.75	0.08	0.22	<ql< td=""><td>0.06</td><td>4.59</td><td>2.55</td><td></td></ql<>	0.06	4.59	2.55	
1	7.192	31.168	5.932	9.17	0.204	0.932	0.053	0.18	2.302	0.78	
,	18.94	32.24	6.38	10.25	0.11	0.37	0.04	0.2	1.48	0.5	
2	20.76	29.4	8.14	10.86	0.06	0.15	0.03	0.09	0.73	0.28	
2	21.53	28.81	7.4	9.42	0.08	0.5	0.03	0.2	<ql< td=""><td><ql< td=""><td></td></ql<></td></ql<>	<ql< td=""><td></td></ql<>	
	20.36	21.68	7.79	8.3	0.08	0.46	0.04	0.18	1.96	0.75	
	13.75	15.34	7.23	9.32	0.03	0.07	0.02	0.03	0.64	0.3	
	9.1	10.28	5.57	6.2	0.03	0.06	0.02	0.03	1.01	0.62	
	12.73	14.96	6.02	6.47	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>1.91</td><td>0.91</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>1.91</td><td>0.91</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>1.91</td><td>0.91</td><td></td></ql<></td></ql<>	<ql< td=""><td>1.91</td><td>0.91</td><td></td></ql<>	1.91	0.91	
	19.82	21.51	9.65	10.92	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>1.56</td><td>0.78</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>1.56</td><td>0.78</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>1.56</td><td>0.78</td><td></td></ql<></td></ql<>	<ql< td=""><td>1.56</td><td>0.78</td><td></td></ql<>	1.56	0.78	
	15.61	17.17	7.46	7.83	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>1.95</td><td>0.97</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>1.95</td><td>0.97</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>1.95</td><td>0.97</td><td></td></ql<></td></ql<>	<ql< td=""><td>1.95</td><td>0.97</td><td></td></ql<>	1.95	0.97	
	25.02	28.08	10.23	11.7	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>2.62</td><td>1.07</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>2.62</td><td>1.07</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>2.62</td><td>1.07</td><td></td></ql<></td></ql<>	<ql< td=""><td>2.62</td><td>1.07</td><td></td></ql<>	2.62	1.07	
	21.97	23.08	9.64	11.57	1.87	10.82	0.72	3.96	1.61	0.67	
	21.42	24.29	9.55	10	1.19	11.62	0.35	3.07	<ql< td=""><td><ql< td=""><td></td></ql<></td></ql<>	<ql< td=""><td></td></ql<>	

	23.92	29.01	8.58	10.5	0.27	0.3	0.1	0.1	0.45	0.16	
	18.56	20.08	6.98	7.6	0.26	0.35	0.1	0.1	1.33	0.5	
AVG	20.70	30.79	7.58	10.86	1.44	7.14	0.46	1.57	2.36	0.92	
90th percentile	27.48	44.20	10.04	13.99	3.97	20.25	1.05	4.54	5.28	1.76	
10th percentile	8.78	12.32	3.02	4.74	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>0.40</td><td>0.21</td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>0.40</td><td>0.21</td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>0.40</td><td>0.21</td><td></td></ql<></td></ql<>	<ql< td=""><td>0.40</td><td>0.21</td><td></td></ql<>	0.40	0.21	
Minimum	3.97	5.42	1.94	3.59	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td></td></ql<></td></ql<>	<ql< td=""><td></td></ql<>	
Maximum	107.00	131.00	36.00	43.00	5.64	36.00	1.80	5.76	8.44	2.55	

Settleabl	e Solids	Е. с	coli	Zinc,	Total	Nitrate pl	us Nitrite		
(ml	/L)	Geometric Mea	an (n/100 ml)	(μg	/L)	(kg/d)	(mg/L)		
MO AVG	MAX	MO AVG	MAX	MO AVG	MAX	MO AVG	MO AVG		
0.01	0.01	99.7	396.8	<ql< td=""><td><ql< td=""><td>2.24</td><td>1.65</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>2.24</td><td>1.65</td><td></td><td></td></ql<>	2.24	1.65		
0.01	0.01	6.36	31.8	<ql< td=""><td><ql< td=""><td>9.03</td><td>11.29</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>9.03</td><td>11.29</td><td></td><td></td></ql<>	9.03	11.29		
0.01	0.01	1.7	3.1	<ql< td=""><td><ql< td=""><td>4.23</td><td>NULL</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>4.23</td><td>NULL</td><td></td><td></td></ql<>	4.23	NULL		
0.01	0.01	0.25	1	<ql< td=""><td><ql< td=""><td>7.93</td><td>10.22</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>7.93</td><td>10.22</td><td></td><td></td></ql<>	7.93	10.22		
0.01	0.01	0.8	2	<ql< td=""><td><ql< td=""><td>107</td><td>36</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>107</td><td>36</td><td></td><td></td></ql<>	107	36		
0.01	0.01	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>17.83</td><td>15.68</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>17.83</td><td>15.68</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>17.83</td><td>15.68</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>17.83</td><td>15.68</td><td></td><td></td></ql<>	17.83	15.68		
0.01	0.01	0.25	1	<ql< td=""><td><ql< td=""><td>6.74</td><td>2.01</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>6.74</td><td>2.01</td><td></td><td></td></ql<>	6.74	2.01		
0.01	0.01	9.48	35.9	<ql< td=""><td><ql< td=""><td>2.8</td><td>0.85</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>2.8</td><td>0.85</td><td></td><td></td></ql<>	2.8	0.85		
0.01	0.01	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>8.63</td><td>3.14</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>8.63</td><td>3.14</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>8.63</td><td>3.14</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>8.63</td><td>3.14</td><td></td><td></td></ql<>	8.63	3.14		
0.01	0.01	1.28	3.1	<ql< td=""><td><ql< td=""><td>13.03</td><td>4.27</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>13.03</td><td>4.27</td><td></td><td></td></ql<>	13.03	4.27		
0.01	0.01	0.8	3	<ql< td=""><td><ql< td=""><td>3.77</td><td>0.9</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>3.77</td><td>0.9</td><td></td><td></td></ql<>	3.77	0.9		
0.01	0.01	0.75	2	<ql< td=""><td><ql< td=""><td>15.09</td><td>3.33</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>15.09</td><td>3.33</td><td></td><td></td></ql<>	15.09	3.33		
0.01	0.01	1.53	3.1	<ql< td=""><td><ql< td=""><td>11.2</td><td>4.28</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>11.2</td><td>4.28</td><td></td><td></td></ql<>	11.2	4.28		
0.01	0.01	45.96	151.5	<ql< td=""><td><ql< td=""><td>13.23</td><td>4.48</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>13.23</td><td>4.48</td><td></td><td></td></ql<>	13.23	4.48		
0.01	0.01	4.9	9.8	0.313	1.25	1.73	1.1		
0.01	0.01	121	325	<ql< td=""><td><ql< td=""><td>30.07</td><td>9.19</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>30.07</td><td>9.19</td><td></td><td></td></ql<>	30.07	9.19		
0.01	0.01	29.05	107	<ql< td=""><td><ql< td=""><td>15.1</td><td>6.02</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>15.1</td><td>6.02</td><td></td><td></td></ql<>	15.1	6.02		
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>22.89</td><td>8.3</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>22.89</td><td>8.3</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>22.89</td><td>8.3</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>22.89</td><td>8.3</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>22.89</td><td>8.3</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>22.89</td><td>8.3</td><td></td><td></td></ql<>	22.89	8.3		
<ql< td=""><td><ql< td=""><td>17.48</td><td>79.2</td><td>12</td><td>62</td><td>19.09</td><td>5.56</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>17.48</td><td>79.2</td><td>12</td><td>62</td><td>19.09</td><td>5.56</td><td></td><td></td></ql<>	17.48	79.2	12	62	19.09	5.56		
<ql< td=""><td><ql< td=""><td>5.33</td><td>16</td><td>6.33</td><td>19</td><td>18.74</td><td>9.41</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>5.33</td><td>16</td><td>6.33</td><td>19</td><td>18.74</td><td>9.41</td><td></td><td></td></ql<>	5.33	16	6.33	19	18.74	9.41		
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>3.87</td><td>5.99</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>3.87</td><td>5.99</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>3.87</td><td>5.99</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>3.87</td><td>5.99</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>3.87</td><td>5.99</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>3.87</td><td>5.99</td><td></td><td></td></ql<>	3.87	5.99		
<ql< td=""><td><ql< td=""><td>1</td><td>4</td><td><ql< td=""><td><ql< td=""><td>14.89</td><td>5.15</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>1</td><td>4</td><td><ql< td=""><td><ql< td=""><td>14.89</td><td>5.15</td><td></td><td></td></ql<></td></ql<></td></ql<>	1	4	<ql< td=""><td><ql< td=""><td>14.89</td><td>5.15</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>14.89</td><td>5.15</td><td></td><td></td></ql<>	14.89	5.15		
<ql< td=""><td><ql< td=""><td>3</td><td>8</td><td><ql< td=""><td><ql< td=""><td>17.46</td><td>5.89</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>3</td><td>8</td><td><ql< td=""><td><ql< td=""><td>17.46</td><td>5.89</td><td></td><td></td></ql<></td></ql<></td></ql<>	3	8	<ql< td=""><td><ql< td=""><td>17.46</td><td>5.89</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>17.46</td><td>5.89</td><td></td><td></td></ql<>	17.46	5.89		
<ql< td=""><td><ql< td=""><td>2</td><td>5</td><td><ql< td=""><td><ql< td=""><td>20.02</td><td>7.87</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>2</td><td>5</td><td><ql< td=""><td><ql< td=""><td>20.02</td><td>7.87</td><td></td><td></td></ql<></td></ql<></td></ql<>	2	5	<ql< td=""><td><ql< td=""><td>20.02</td><td>7.87</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>20.02</td><td>7.87</td><td></td><td></td></ql<>	20.02	7.87		
<ql< td=""><td><ql< td=""><td>33</td><td>161</td><td><ql< td=""><td><ql< td=""><td>21.53</td><td>7.4</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>33</td><td>161</td><td><ql< td=""><td><ql< td=""><td>21.53</td><td>7.4</td><td></td><td></td></ql<></td></ql<></td></ql<>	33	161	<ql< td=""><td><ql< td=""><td>21.53</td><td>7.4</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>21.53</td><td>7.4</td><td></td><td></td></ql<>	21.53	7.4		
<ql< td=""><td><ql< td=""><td>0.25</td><td>1</td><td><ql< td=""><td><ql< td=""><td>18.4</td><td>7.04</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>0.25</td><td>1</td><td><ql< td=""><td><ql< td=""><td>18.4</td><td>7.04</td><td></td><td></td></ql<></td></ql<></td></ql<>	0.25	1	<ql< td=""><td><ql< td=""><td>18.4</td><td>7.04</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>18.4</td><td>7.04</td><td></td><td></td></ql<>	18.4	7.04		
<ql< td=""><td><ql< td=""><td>1</td><td>3</td><td><ql< td=""><td><ql< td=""><td>13.11</td><td>6.93</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>1</td><td>3</td><td><ql< td=""><td><ql< td=""><td>13.11</td><td>6.93</td><td></td><td></td></ql<></td></ql<></td></ql<>	1	3	<ql< td=""><td><ql< td=""><td>13.11</td><td>6.93</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>13.11</td><td>6.93</td><td></td><td></td></ql<>	13.11	6.93		
<ql< td=""><td><ql< td=""><td>0.4</td><td>1</td><td><ql< td=""><td><ql< td=""><td>8.09</td><td>4.95</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>0.4</td><td>1</td><td><ql< td=""><td><ql< td=""><td>8.09</td><td>4.95</td><td></td><td></td></ql<></td></ql<></td></ql<>	0.4	1	<ql< td=""><td><ql< td=""><td>8.09</td><td>4.95</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>8.09</td><td>4.95</td><td></td><td></td></ql<>	8.09	4.95		
<ql< td=""><td>Χ</td><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>10.82</td><td>5.11</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	Χ	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>10.82</td><td>5.11</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>10.82</td><td>5.11</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>10.82</td><td>5.11</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>10.82</td><td>5.11</td><td></td><td></td></ql<>	10.82	5.11		
<ql< td=""><td><ql< td=""><td>0.4</td><td>1</td><td><ql< td=""><td><ql< td=""><td>17.49</td><td>8.49</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>0.4</td><td>1</td><td><ql< td=""><td><ql< td=""><td>17.49</td><td>8.49</td><td></td><td></td></ql<></td></ql<></td></ql<>	0.4	1	<ql< td=""><td><ql< td=""><td>17.49</td><td>8.49</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>17.49</td><td>8.49</td><td></td><td></td></ql<>	17.49	8.49		
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>13.66</td><td>6.5</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>13.66</td><td>6.5</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>13.66</td><td>6.5</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>13.66</td><td>6.5</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>13.66</td><td>6.5</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>13.66</td><td>6.5</td><td></td><td></td></ql<>	13.66	6.5		
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>36</td><td>36</td><td>22.4</td><td>9.16</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>36</td><td>36</td><td>22.4</td><td>9.16</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>36</td><td>36</td><td>22.4</td><td>9.16</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>36</td><td>36</td><td>22.4</td><td>9.16</td><td></td><td></td></ql<>	36	36	22.4	9.16		
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>32.1</td><td>32.1</td><td>20.36</td><td>8.97</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>32.1</td><td>32.1</td><td>20.36</td><td>8.97</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>32.1</td><td>32.1</td><td>20.36</td><td>8.97</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>32.1</td><td>32.1</td><td>20.36</td><td>8.97</td><td></td><td></td></ql<>	32.1	32.1	20.36	8.97		
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>33.8</td><td>33.8</td><td>21.42</td><td>9.55</td><td> </td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>33.8</td><td>33.8</td><td>21.42</td><td>9.55</td><td> </td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>33.8</td><td>33.8</td><td>21.42</td><td>9.55</td><td> </td><td></td></ql<></td></ql<>	<ql< td=""><td>33.8</td><td>33.8</td><td>21.42</td><td>9.55</td><td> </td><td></td></ql<>	33.8	33.8	21.42	9.55	 	

	<ql< th=""><th><ql< th=""><th><ql< th=""><th><ql< th=""><th>35.6</th><th>35.6</th><th>23.47</th><th>8.42</th><th></th><th></th></ql<></th></ql<></th></ql<></th></ql<>	<ql< th=""><th><ql< th=""><th><ql< th=""><th>35.6</th><th>35.6</th><th>23.47</th><th>8.42</th><th></th><th></th></ql<></th></ql<></th></ql<>	<ql< th=""><th><ql< th=""><th>35.6</th><th>35.6</th><th>23.47</th><th>8.42</th><th></th><th></th></ql<></th></ql<>	<ql< th=""><th>35.6</th><th>35.6</th><th>23.47</th><th>8.42</th><th></th><th></th></ql<>	35.6	35.6	23.47	8.42		
	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>49.2</td><td>49.2</td><td>17.23</td><td>6.48</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>49.2</td><td>49.2</td><td>17.23</td><td>6.48</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>49.2</td><td>49.2</td><td>17.23</td><td>6.48</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>49.2</td><td>49.2</td><td>17.23</td><td>6.48</td><td></td><td></td></ql<>	49.2	49.2	17.23	6.48		
AVG	0.005	0.005	11	38	5.7	7.5	16.5	7.2		
90th percentile	0.01	0.01	31	129	33.0	34.7	22.6	10.0		
10th percentile	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>3.8</td><td>1.8</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>3.8</td><td>1.8</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>3.8</td><td>1.8</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>3.8</td><td>1.8</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>3.8</td><td>1.8</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>3.8</td><td>1.8</td><td></td><td></td></ql<>	3.8	1.8		
Minimum	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>1.7</td><td>0.9</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>1.7</td><td>0.9</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>1.7</td><td>0.9</td><td></td><td></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>1.7</td><td>0.9</td><td></td><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>1.7</td><td>0.9</td><td></td><td></td></ql<></td></ql<>	<ql< td=""><td>1.7</td><td>0.9</td><td></td><td></td></ql<>	1.7	0.9		
Maximum	0.01	0.01	121	325	49.2	62.0	107.0	36.0		

Oil&Grease											
(kg			g/L)								
MO AVG	MAX	MO AVG	MAX								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
6.3	25.2	3.1	9.5								
16.68	30.92	7	10.5								
27.35	63.73	6.68	13.3								
33.39	64.97	10.13	12.8								
19.83	44.78	6.3	11.3								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
6.42	22.72	3.88	8.8								
7.32	29.83	2.68	8.2								
2.4	14.41	1.4	5.6								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
7.12	21.6	2.88	9								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td>1.53</td><td>6.1</td></ql<></td></ql<>	<ql< td=""><td>1.53</td><td>6.1</td></ql<>	1.53	6.1								
3.87	19.35	1.42	7.1								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
7.45	29.82	2.85	11.4								
3.92	14.1	2.03	6.9								
3.71	18.57	1.42	7.1								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
1.79	8.97	1.08	5.4								
4.04	16.14	1.58	6.3								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								
<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>								

	<ql< th=""><th><ql< th=""><th><ql< th=""><th><ql< th=""></ql<></th></ql<></th></ql<></th></ql<>	<ql< th=""><th><ql< th=""><th><ql< th=""></ql<></th></ql<></th></ql<>	<ql< th=""><th><ql< th=""></ql<></th></ql<>	<ql< th=""></ql<>
	<ql< th=""><th><ql< th=""><th><ql< th=""><th><ql< th=""></ql<></th></ql<></th></ql<></th></ql<>	<ql< th=""><th><ql< th=""><th><ql< th=""></ql<></th></ql<></th></ql<>	<ql< th=""><th><ql< th=""></ql<></th></ql<>	<ql< th=""></ql<>
AVG	4.2	11.8	1.6	3.9
90th percentile	12.1	30.4	5.1	10.9
10th percentile	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Minimum	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Maximum	33.4	65.0	10.1	13.3

Attachment F: MSTRANTI and Stats.exe

MSTRANTI DATA SOURCE REPORT

Stream information											
Mean Hardness	Same as effluent for discharge to dry ditch										
90% Temperature (annual)	Same as effluent for discharge to dry ditch										
90% Maximum pH	Same as effluent for discharge to dry ditch										
10% Maximum pH	Same as effluent for discharge to dry ditch										
Tier Designation	Tier Determination (Flow Frequency Memo)										
Stream	n Flows										
All Data	Flow Frequency Memo (Fact Sheet Attachment A)										
Mixing In	nformation										
All Data	100% used for 0 MGD stream flows										
Effluent Ir	nformation										
Mean Hardness	Application –Water Quality Criteria Monitoring										
90% Temperature (annual)	Application Form 2C										
90% Maximum pH	DMR data										
10% Maximum pH	DMR data										
Discharge flow	Permit Application (Design Flow)										

Data Location:

Attachment A: Flow Frequency Description
Attachment E: Facility Effluent Data (application and DMR data)

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Facility Name: Tyson Farms - Glen Allen Permit No.: VA0004031

Receiving Stream: Chickahominy River, UT Version: OWP Guidance Memo 00-2011 (8/24/00)

Stream Information		
Mean Hardness (as CaCO3) =	426	mg/L
90% Temperature (Annual) =	26.9	deg C
90% Temperature (Wet season) =	26.9	deg C
90% Maximum pH =	8.23	SU
10% Maximum pH =	7.11	SU
Tier Designation (1 or 2) =	1	
Public Water Supply (PWS) Y/N? =	n	
Trout Present Y/N? =	n	
Early Life Stages Present Y/N? =	У	

Stream Flows		
1Q10 (Annual) =	0	MGD
7Q10 (Annual) =	0	MGD
30Q10 (Annual) =	0	MGD
1Q10 (Wet season) =	0	MGD
30Q10 (Wet season)	0	MGD
30Q5 =	0	MGD
Harmonic Mean =	0	MGD

Mixing Information	Mixing Information											
Annual - 1Q10 Mix =	100	%										
- 7Q10 Mix =	100	%										
- 30Q10 Mix =	100	%										
Wet Season - 1Q10 Mix =	100	%										
- 30Q10 Mix =	100	%										

Effluent Information										
Mean Hardness (as CaCO3) =	426	mg/L								
90% Temp (Annual) =	26.9	deg C								
90% Temp (Wet season) =	26.9	deg C								
90% Maximum pH =	8.23	SU								
10% Maximum pH =	7.11	SU								
Discharge Flow =	1.25	MGD								

Parameter	Background		Water Qua	lity Criteria		Wasteload Allocations					Antidegrada	ition Baseline		А	ntidegradat	ion Allocations		Most Limiting Allocations			
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Acenapthene	0			na	9.9E+02			na	9.9E+02											na	9.9E+02
Acrolein	0			na	9.3E+00			na	9.3E+00											na	9.3E+00
Acrylonitrile ^C	0			na	2.5E+00			na	2.5E+00											na	2.5E+00
Aldrin ^C	0	3.0E+00		na	5.0E-04	3.0E+00		na	5.0E-04									3.0E+00		na	5.0E-04
Ammonia-N (mg/l) (Yearly)	0	F 40F 00	7 (05 01			5.40E+00	7.69E-01											F 40F 00	7 (05 01		
Ammonia-N (mg/l)	0	5.40E+00	7.69E-01	na		5.4UE+UU	7.09E-UI	na										5.40E+00	7.69E-01	na	
(High Flow)	0	5.40E+00	7.69E-01	na		5.40E+00	7.69E-01	na										5.40E+00	7.69E-01	na	
Anthracene	0			na	4.0E+04			na	4.0E+04											na	4.0E+04
Antimony	0			na	6.4E+02			na	6.4E+02											na	6.4E+02
Arsenic	0	3.4E+02	1.5E+02	na		3.4E+02	1.5E+02	na										3.4E+02	1.5E+02	na	
Barium	0			na				na												na	
Benzene ^C	0			na	5.1E+02			na	5.1E+02											na	5.1E+02
Benzidine ^C	0			na	2.0E-03			na	2.0E-03											na	2.0E-03
Benzo (a) anthracene ^C	0			na	1.8E-01			na	1.8E-01											na	1.8E-01
Benzo (b) fluoranthene ^C	0			na	1.8E-01			na	1.8E-01											na	1.8E-01
Benzo (k) fluoranthene ^C	0			na	1.8E-01			na	1.8E-01											na	1.8E-01
Benzo (a) pyrene ^C	0			na	1.8E-01			na	1.8E-01											na	1.8E-01
Bis2-Chloroethyl Ether ^C	0			na	5.3E+00			na	5.3E+00											na	5.3E+00
Bis2-Chloroisopropyl Ether	0			na	6.5E+04			na	6.5E+04											na	6.5E+04
Bis 2-Ethylhexyl Phthalate ^C	0			na	2.2E+01			na	2.2E+01											na	2.2E+01
Bromoform ^C	0			na	1.4E+03			na	1.4E+03											na	1.4E+03
Butylbenzylphthalate	0			na	1.9E+03			na	1.9E+03											na	1.9E+03
Cadmium	0	1.9E+01	3.4E+00	na		1.9E+01	3.4E+00	na										1.9E+01	3.4E+00	na	
Carbon Tetrachloride C	0			na	1.6E+01			na	1.6E+01											na	1.6E+01
Chlordane ^C	0	2.4E+00	4.3E-03	na	8.1E-03	2.4E+00	4.3E-03	na	8.1E-03									2.4E+00	4.3E-03	na	8.1E-03
Chloride	0	8.6E+05	2.3E+05	na		8.6E+05	2.3E+05	na										8.6E+05	2.3E+05	na	
TRC	0	1.9E+01	1.1E+01	na		1.9E+01	1.1E+01	na										1.9E+01	1.1E+01	na	
Chlorobenzene	0			na	1.6E+03			na	1.6E+03											na	1.6E+03

Parameter	Background		Water Qua	lity Criteria			Wasteload	Allocations			Antidegradat	tion Baseline		А	ntidegradatio	on Allocations			Most Limit	ing Allocations	5
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Chlorodibromomethane ^C	0			na	1.3E+02			na	1.3E+02											na	1.3E+02
Chloroform	0			na	1.1E+04			na	1.1E+04											na	1.1E+04
2-Chloronaphthalene	0			na	1.6E+03			na	1.6E+03											na	1.6E+03
2-Chlorophenol	0			na	1.5E+02			na	1.5E+02											na	1.5E+02
Chlorpyrifos	0	8.3E-02	4.1E-02	na		8.3E-02	4.1E-02	na										8.3E-02	4.1E-02	na	
Chromium III	0	1.8E+03	2.3E+02	na		1.8E+03	2.3E+02	na										1.8E+03	2.3E+02	na	
Chromium VI	0	1.6E+01	1.1E+01	na		1.6E+01	1.1E+01	na										1.6E+01	1.1E+01	na	
Chromium, Total	0			1.0E+02				na												na	
Chrysene ^C	0			na	1.8E-02			na	1.8E-02											na	1.8E-02
Copper	0	5.0E+01	2.9E+01	na		5.0E+01	2.9E+01	na										5.0E+01	2.9E+01	na	
Cyanide, Free	0	2.2E+01	5.2E+00	na	1.6E+04	2.2E+01	5.2E+00	na	1.6E+04									2.2E+01	5.2E+00	na	1.6E+04
DDD ^C	0			na	3.1E-03			na	3.1E-03											na	3.1E-03
DDE ^C	0			na	2.2E-03			na	2.2E-03											na	2.2E-03
DDT ^C	0	1.1E+00	1.0E-03	na	2.2E-03	1.1E+00	1.0E-03	na	2.2E-03									1.1E+00	1.0E-03	na	2.2E-03
Demeton	0		1.0E-01	na			1.0E-01	na											1.0E-01	na	
Diazinon	0	1.7E-01	1.7E-01	na		1.7E-01	1.7E-01	na										1.7E-01	1.7E-01	na	
Dibenz(a,h)anthracene ^C	0			na	1.8E-01			na	1.8E-01											na	1.8E-01
1,2-Dichlorobenzene	0			na	1.3E+03			na	1.3E+03											na	1.3E+03
1,3-Dichlorobenzene	0			na	9.6E+02			na	9.6E+02											na	9.6E+02
1,4-Dichlorobenzene	0			na	1.9E+02			na	1.9E+02											na	1.9E+02
3,3-Dichlorobenzidine ^C	0			na	2.8E-01			na	2.8E-01											na	2.8E-01
Dichlorobromomethane ^C	0			na	1.7E+02			na	1.7E+02											na	1.7E+02
1,2-Dichloroethane C	0			na	3.7E+02			na	3.7E+02											na	3.7E+02
1,1-Dichloroethylene	0			na	7.1E+03			na	7.1E+03											na	7.1E+03
1,2-trans-dichloroethylene	0			na	1.0E+04			na	1.0E+04											na	1.0E+04
2,4-Dichlorophenol	0			na	2.9E+02			na	2.9E+02											na	2.9E+02
2,4-Dichlorophenoxy				na	2.72102			na	2.72102											a	2.72.102
acetic acid (2,4-D)	0			na				na												na	
1,2-Dichloropropane	0			na	1.5E+02			na	1.5E+02											na	1.5E+02
1,3-Dichloropropene	0			na	2.1E+02			na	2.1E+02											na	2.1E+02
Dieldrin ^C	0	2.4E-01	5.6E-02	na	5.4E-04	2.4E-01	5.6E-02	na	5.4E-04									2.4E-01	5.6E-02	na	5.4E-04
Diethyl Phthalate	0			na	4.4E+04			na	4.4E+04											na	4.4E+04
2,4-Dimethylphenol	0			na	8.5E+02			na	8.5E+02											na	8.5E+02
Dimethyl Phthalate	0			na	1.1E+06			na	1.1E+06											na	1.1E+06
Di-n-Butyl Phthalate	0			na	4.5E+03			na	4.5E+03											na	4.5E+03
2,4 Dinitrophenol	0			na	5.3E+03			na	5.3E+03											na	5.3E+03
2-Methyl-4,6-Dinitrophenol	0			na	2.8E+02			na	2.8E+02											na	2.8E+02
2,4-Dinitrotoluene C Dioxin 2,3,7,8-	0			na	3.4E+01			na	3.4E+01											na	3.4E+01
tetrachlorodibenzo-p-dioxin	0			na	5.1E-08			na	5.1E-08											na	5.1E-08
1,2-Diphenylhydrazine ^C	0			na	2.0E+00			na	2.0E+00											na	2.0E+00
Alpha-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	2.2E-01	5.6E-02	na	8.9E+01									2.2E-01	5.6E-02	na	8.9E+01
Beta-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	2.2E-01	5.6E-02	na	8.9E+01									2.2E-01	5.6E-02	na	8.9E+01
Alpha + Beta Endosulfan	0	2.2E-01	5.6E-02				5.6E-02											2.2E-01	5.6E-02		
Endosulfan Sulfate	0			na	8.9E+01	2.22 01	3.0L 0Z	na	8.9E+01											na	8.9E+01
Endrin	0	8.6E-02	3.6E-02	na	6.0E-02	8.6E-02	3.6E-02	na	6.0E-02									8.6E-02	3.6E-02	na	6.0E-02
Endrin Aldehyde	0	0.0L-02	3.0L-02	na	3.0E-01	0.0L-02	J.UL-U2	na	3.0E-01									0.0L-02	3.0L-02 	na	3.0E-01
Enaili Alacityae	J			на	J.UL-U1			I I C	J.UL-UI											ıια	J.UL-U1

Parameter	Background		Water Qua	lity Criteria			Wasteload	Allocations			Antidegrada	ition Baseline		A	Antidegradati	on Allocations			Most Limiti	ng Allocations	
(ug/l unless noted)	Conc.	Acute		HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Ethylbenzene	0			na	2.1E+03			na	2.1E+03											na na	2.1E+03
Fluoranthene	0			na	1.4E+02			na	1.4E+02											na	1.4E+02
Fluorene	0			na	5.3E+03			na	5.3E+03											na	5.3E+03
Foaming Agents	0			na				na												na	
Guthion	0		1.0E-02	na			1.0E-02	na											1.0E-02	na	
Heptachlor ^C	0	5.2E-01	3.8E-03	na	7.9E-04	5.2E-01	3.8E-03	na	7.9E-04									5.2E-01	3.8E-03	na	7.9E-04
Heptachlor Epoxide ^C	0	5.2E-01	3.8E-03	na	3.9E-04	5.2E-01	3.8E-03	na	3.9E-04									5.2E-01	3.8E-03	na	3.9E-04
Hexachlorobenzene ^C	0	5.22 01	3.0L 03	na	2.9E-03	5.22 01	3.0L 03	na	2.9E-03										J.UL 03	na	2.9E-03
Hexachlorobutadiene ^C	0			na	1.8E+02			na	1.8E+02											na	1.8E+02
Hexachlorocyclohexane	Ü			na	1.02102			na	1.02102											nu .	1.02+02
Alpha-BHC ^c	0			na	4.9E-02			na	4.9E-02											na	4.9E-02
Hexachlorocyclohexane																					
Beta-BHC ^C	0			na	1.7E-01			na	1.7E-01											na	1.7E-01
Hexachlorocyclohexane Gamma-BHC ^C (Lindane)	0	0.55.01			1.05.00	0.55.01			1.05.00									0.55.04			4.05.00
	0	9.5E-01	na	na	1.8E+00	9.5E-01		na	1.8E+00									9.5E-01		na	1.8E+00
Hexachlorocyclopentadiene	0			na	1.1E+03			na	1.1E+03											na	1.1E+03
Hexachloroethane ^C	0			na	3.3E+01			na	3.3E+01											na	3.3E+01
Hydrogen Sulfide	0		2.0E+00	na			2.0E+00	na											2.0E+00	na	
Indeno (1,2,3-cd) pyrene ^C	0			na	1.8E-01			na	1.8E-01											na	1.8E-01
Iron	0			na				na												na	
Isophorone	0			na	9.6E+03			na	9.6E+03											na	9.6E+03
Kepone	0		0.0E+00	na			0.0E+00	na											0.0E+00	na	
Lead	0	6.9E+02	7.9E+01	na		6.9E+02	7.9E+01	na										6.9E+02	7.9E+01	na	
Malathion	0		1.0E-01	na			1.0E-01	na											1.0E-01	na	
Manganese	0			na				na												na	
Mercury	0	1.4E+00	7.7E-01			1.4E+00	7.7E-01											1.4E+00	7.7E-01		
Methyl Bromide	0			na	1.5E+03			na	1.5E+03											na	1.5E+03
Methylene Chloride ^C	0			na	5.9E+03			na	5.9E+03											na	5.9E+03
Methoxychlor	0		3.0E-02	na			3.0E-02	na											3.0E-02	na	
Mirex	0		0.0E+00	na			0.0E+00	na											0.0E+00	na	
Nickel	0	5.9E+02	6.5E+01	na	4.6E+03	5.9E+02	6.5E+01	na	4.6E+03									5.9E+02	6.5E+01	na	4.6E+03
Nitrate (as N)	0			na				na												na	
Nitrobenzene	0			na	6.9E+02			na	6.9E+02											na	6.9E+02
N-Nitrosodimethylamine ^C	0			na	3.0E+01			na	3.0E+01											na	3.0E+01
N-Nitrosodiphenylamine ^C	0			na	6.0E+01			na	6.0E+01											na	6.0E+01
N-Nitrosodi-n-propylamine ^C	0			na	5.1E+00			na	5.1E+00											na	5.1E+00
Nonylphenol	0	2.8E+01	6.6E+00			2.8E+01	6.6E+00	na										2.8E+01	6.6E+00	na	
Parathion	0	6.5E-02	1.3E-02	na		6.5E-02	1.3E-02	na										6.5E-02	1.3E-02	na	
PCB Total ^C	0		1.4E-02	na	6.4E-04		1.4E-02	na	6.4E-04										1.4E-02	na	6.4E-04
Pentachlorophenol ^C	0	9.7E+00	7.5E+00	na	3.0E+01	9.7E+00	7.5E+00	na	3.0E+01									9.7E+00	7.5E+00	na	3.0E+01
Phenol	0			na	8.6E+05			na	8.6E+05											na	8.6E+05
Pyrene	0			na	4.0E+03			na	4.0E+03											na	4.0E+03
Radionuclides	0			na				na												na	
Gross Alpha Activity	J			na				HG	-			•	-							iia	
(pCi/L)	0			na				na												na	
Beta and Photon Activity (mrem/yr)	0			na				na												na	
Radium 226 + 228 (pCi/L)	0			na				na												na	
Uranium (ug/l)	0			na				na												na	
(-3, .)	J			nu				na	-									<u> </u>		ıα	

Parameter	Background		Water Qua	ality Criteria			Wasteload	Allocations			Antidegrada	tion Baseline		ıA	ntidegradati	on Allocations		Most Limiting Allocations				
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	
Selenium, Total Recoverable	0	2.0E+01	5.0E+00	na	4.2E+03	2.0E+01	5.0E+00	na	4.2E+03									2.0E+01	5.0E+00	na	4.2E+03	
Silver	0	3.7E+01		na		3.7E+01		na										3.7E+01		na		
Sulfate	0			na				na												na		
1,1,2,2-Tetrachloroethane ^C	0			na	4.0E+01			na	4.0E+01											na	4.0E+01	
Tetrachloroethylene ^C	0			na	3.3E+01			na	3.3E+01											na	3.3E+01	
Thallium	0			na	4.7E-01			na	4.7E-01											na	4.7E-01	
Toluene	0			na	6.0E+03			na	6.0E+03											na	6.0E+03	
Total dissolved solids	0			na				na												na		
Toxaphene ^C	0	7.3E-01	2.0E-04	na	2.8E-03	7.3E-01	2.0E-04	na	2.8E-03									7.3E-01	2.0E-04	na	2.8E-03	
Tributyltin	0	4.6E-01	7.2E-02	na		4.6E-01	7.2E-02	na										4.6E-01	7.2E-02	na		
1,2,4-Trichlorobenzene	0			na	7.0E+01			na	7.0E+01											na	7.0E+01	
1,1,2-Trichloroethane ^C	0			na	1.6E+02			na	1.6E+02											na	1.6E+02	
Trichloroethylene C	0			na	3.0E+02			na	3.0E+02											na	3.0E+02	
2,4,6-Trichlorophenol ^C	0			na	2.4E+01			na	2.4E+01											na	2.4E+01	
2-(2,4,5-Trichlorophenoxy) propionic acid (Silvex)	0			na				na												na		
Vinyl Chloride ^C	0			na	2.4E+01			na	2.4E+01											na	2.4E+01	
Zinc	0	3.8E+02	3.8E+02	na	2.6E+04	3.8E+02	3.8E+02	na	2.6E+04									3.8E+02	3.8E+02	na	2.6E+04	

Notes:

- 1. All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise
- 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals
- 3. Metals measured as Dissolved, unless specified otherwise
- 4. "C" indicates a carcinogenic parameter
- Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information. Antidegradation WLAs are based upon a complete mix.
- 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1(WQC background conc.) + background conc.) for human health
- 7. WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens and Harmonic Mean for Carcinogens. To apply mixing ratios from a model set the stream flow equal to (mixing ratio 1), effluent flow equal to 1 and 100% mix.

Metal	Target Value (SSTV)
Antimony	6.4E+02
Arsenic	9.0E+01
Barium	na
Cadmium	2.0E+00
Chromium III	1.4E+02
Chromium VI	6.4E+00
Copper	1.8E+01
Iron	na
Lead	4.7E+01
Manganese	na
Mercury	4.6E-01
Nickel	3.9E+01
Selenium	3.0E+00
Silver	1.5E+01
Zinc	1.5E+02

Note: do not use QL's lower than the minimum QL's provided in agency guidance

Stats.exe Results

Summary of Statistics:

```
# observations = 10
Expected Value = .146259
Variance = .007701
C.V. = 0.6
97th percentile daily values = .355910
97th percentile 4 day average = .243344
97th percentile 30 day average= .176396
# < Q.L. = 8
Model used = BPJ Assumptions, Type 1
data
```

No Limit is required for this material

```
The data are (mg/L):
0.1
0.1
0.35
0.72
0.02
0.02
0.04
0.03
0.03
0.04
```

Based on the data submitted with the application And DMRs, no limit is required for this parameter.

Facility = Tyson Farms
Chemical = Chloride, mg/L
Chronic averaging period = 4
WLAa = 860
WLAc = 230
Q.L. = 1
samples/mo. = 1
samples/wk. = 1

Summary of Statistics:

```
# observations = 3
Expected Value = 149.533
Variance = 8049.67
C.V. = 0.6
97th percentile daily values = 363.877
97th percentile 4 day average = 248.792
97th percentile 30 day average= 180.345
# < Q.L. = 0
Model used = BPJ Assumptions, type 2 data
A limit is needed based on Chronic Toxicity
```

Maximum Daily Limit = 336.392200332243 Average Weekly limit = 336.392200332243 Average Monthly Limit = 336.392200332243

The data are (mg/L): 168.6 150 130

Based on data submitted with the application, a new chloride limit is required based on chronic toxicity. However, because the limit is triggered with a limited set of data, and all data is below the WLAs, no limit is applied at this time. Monthly monitoring will be required over the course of the permit term and reasonable potential will be evaluated at the next reissuance.

Facility = Tyson Farms
Chemical = Hydrogen Sulfide, µg/L
Chronic averaging period = 4
WLAa =
WLAc = 2
Q.L. = 1
samples/mo. = 1
samples/wk. = 1

Summary of Statistics:

observations = 1
Expected Value = 400
Variance = 57600
C.V. = 0.6
97th percentile daily values = 973.367
97th percentile 4 day average = 665.516
97th percentile 30 day average= 482.421
< Q.L. = 0
Model used = BPJ Assumptions, type 2 data
A limit is needed based on Chronic Toxicity

Maximum Daily Limit = 2.92514956810646 Average Weekly limit = 2.92514956810646 Average Monthly Limit = 2.92514956810646

The data are: 400 µg/L

A reasonable potential analysis was performed using hydrogen sulfide data reported on the permit application. Based on this analysis, a limit is needed. However, because the permittee has demonstrated that detections of this parameters derived from sampling errors, and subsequent sampling was undetected, no further sampling for this parameter will be required.

Facility = Tyson Farms
Chemical = Zinc, dissolved, µg/L
Chronic averaging period = 4
WLAa = 380
WLAc = 380
Q.L. = 2.9
samples/mo. = 1
samples/wk. = 1

Summary of Statistics:

observations = 3

Expected Value = 92.0333

Variance = 3049.24

C.V. = 0.6

97th percentile daily values = 223.955

97th percentile 4 day average = 153.124

97th percentile 30 day average= 110.997

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

No Limit is required for this material

The data are (µg/L):

190 36.3 49.8

A reasonable potential analysis was performed using the existing limit and two additional data provided in March 25, 2015. No limitation is required for this parameter. The limitation included in the 2005 permit will be carried forward to the 2015 permit to avoid antibacksliding.

```
Facility = Tyson Farms
Chemical = Cadmium, dissolved
Chronic averaging period = 4
WLAa = 19
WLAc = 3.4
Q.L.
        = 0.3
# samples/mo. = 1
# samples/wk. = 1
Summary of Statistics:
# observations = 3
Expected Value = .278324
Variance
          = .027887
C.V.
           = 0.6
97th percentile daily values = .677280
97th percentile 4 day average = .463073
97th percentile 30 day average= .335674
# < Q.L.
            = 0
Model used = BPJ Assumptions, type 1 data
```

No limit is required for this material

The data are (µg/L):

3

0

0

A reasonable potential analysis was performed for cadmium, which was reported as < 3.0 μ g/L on the reissuance application. The agency accepted QL for cadmium as 0.3 μ g/L. Therefore, for the purpose of this evaluation cadmium was considered present at a concentration equal to the lab QL of 3 μ g/L. The data provided in the March 25, 2015 report were below the agency QL, and are reported above as 0.

Attachment G: Groundwater Evaluation

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4949-A Cox Road, Glen Allen, VA 23060-6296

804/527-5020

SUBJECT: Tyson Foods, Inc. - Groundwater Evaluation

TO: File

FROM: Janine Howard

DATE: January 27, 2014

Process and Background:

Tyson Foods, Inc. located on Mountain Road in Hanover County is a poultry processing plant, involving slaughter, cut-up, and packaging for human consumption as well as poultry processing for pet food production. The facility is permitted as a minor industrial discharger. The discharge results from the operation of a 1.5 million gallon per day wastewater treatment plant. Components of the treatment system include screening, acidulation, extended aeration, an activated sludge basin with suspended growth for ammonia removal, a four-stage Bardenpho system for biological nutrient removal, tertiary filtering, and ultraviolet disinfection.

Groundwater Monitoring:

There are four monitoring wells on site that are actively sampled (see attached groundwater contour map). Groundwater flows east through the property. MW-1 is the background well and is located north of the processing plant. MW-2, MW-3, and MW-4 are the downgradient wells that were put in place to monitor the groundwater impacts of the original treatment lagoons on site. The lagoons were constructed in 1968 east of the processing plant using on-site soils and were not lined. During the early 1990's groundwater contamination down-gradient of the treatment lagoons was observed in MW-2, MW-3, and MW-4. On April 4, 1992 a Lagoon Closure Plan (see attached) was submitted to and approved by DEQ. The plan involved a groundwater recovery network of wells used to remove contaminated groundwater from the area in addition to draining, sludge volume reduction and eventual revegetation of the lagoons.

The groundwater monitoring plan approved in 1990 requires quarterly groundwater monitoring. Additionally, indefinite quarterly monitoring of the wells was deemed necessary in the January 9, 1992 approval letter for the groundwater remediation plan for the facility. With the closure of the lagoons in 1992, natural attenuation of the contaminant levels in the groundwater is expected to occur over time until the groundwater meets standards.

Quarterly groundwater data was used for this evaluation, derived from sampling events from 2005-2013. See the contour map following this report which includes the approximate locations of all monitoring wells.

The parameters assessed are ammonia-N, biochemical oxygen demand (BOD), chloride, chemical oxygen demand (COD), nitrite, nitrate, sulfate, total dissolved solids (TDS), total kjeldahl nitrogen (TKN), pH, specific conductance, copper, sodium, and zinc. The data were evaluated for normality using the DEQ Piedmont Regional Office, Groundwater Analysis Spreadsheet which employs the Shapiro- Wilk Test of Normality. Non-normal data were assessed using a non-parametric test of significance (Wilcoxon Rank Sum Test), while normal data was assessed for a

significant difference using Cochran's approximation to the Behrens-Fisher Student's t-test with a 5% level of significance. The statewide groundwater standards applicable to this facility are listed in Table I. The facility falls in the Piedmont and Blue Ridge Physiographic Province for which there are also some specific standards and criteria. The results of the tests of significance are summarized in Table II below.

Table I. Groundwater criteria and individual monitoring well averages.

Parameter	Standard	MW-1	MW-2	MW-3	MW-4
	or	(background)			
	Criteria				
Chloride (mg/L)	25 ⁽³⁾	3.0	38	54	48
Nitrate (mg/L)	5 (2)	0.15	0.057	0.097	0.062
Nitrite (mg/L)	0.025 (2)	0.012	0.007	0.012	0.012
TKN (mg/L)	No	1.266	2.545	77.7	10.1
	standard/				
	criteria				
Ammonia (mg/L)	0.025 (2)	0.012	1.2	66	8
Zinc (mg/L)	0.05 (1)	0.01	0.029	0.023	0.021
Copper (mg/L)	1.0 (1)	0.011	0.010	0.016	0.011
BOD	No	1.35	5.33	7.48	8.05
	standard/				
	criteria				
COD	No	15.68	32.57	72.01	51.54
	standard/				
	criteria				
Sulfate (mg/L)	25 ⁽³⁾	4.0	34	12	6.5
TDS (mg/L)	250 ⁽³⁾	41.4	278	480	379
Sodium (mg/L)	270 (1)	3.8	48	79	65
	25 ⁽³⁾				
Conductivity	No	83.42	447.4	1042	493.2
(umhos/cm)	standard/				
	criteria				
pH (SU)	5.5 - 8.5	Min 4.9	Min 5.7	Min 5.8	Min 5.6
	(3)	Max 9.2	Max 7.3	Max 8.4	Max 7.8

⁽¹⁾ Groundwater standards applicable statewide (9 VAC 25-280-40)

Table II. Statistical difference between upgradient well (MW-1) and downgradient wells

Monitoring Well	Chloride	Nitrate	Nitrite	TKN	NH4	Zinc	Copper	BOD	COD	Sulfate	TDS	рН	Sodium	Sp. Cond
MW-2	S	NS	NS	S	S	S	NS	S	S	S	S	NS	S	S
MW-3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	S	NS	S
MW-4	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	S	S	S

S= significant difference, NS= not significant

Chloride:

Statistical analysis of the chloride data indicated a significant difference in concentration at one of the three downgradient wells. Additionally, the majority of the data collected at the downgradient wells is above the groundwater criteria of 25 mg/L. Linear trends suggest a slight decrease in the

⁽²⁾Groundwater standards for the Piedmont & Blue Ridge Physiographic province (9 VAC 25-280-50)

⁽³⁾ Groundwater criteria for the Piedmont & Blue Ridge Physiographic province (9 VAC 25-280-70)

concentrations found at the downgradient MW-2 and MW-3 wells overall. MW-4 exhibits a slight positive trend.

Nitrate:

Downgradient nitrate concentrations were not significantly different from the background well. There are no exceedances of the groundwater standard documented in the groundwater data collected at MW-1, MW-2, MW-3, or MW-4 between March 2005 and February 2013.

Nitrite:

Downgradient nitrite concentrations were not statistically significantly different in the downgradient wells as compared to the upgradient well. There was a single exceedance of the 0.025 mg/L groundwater standard in MW-2 but the remainder of the data collected at all downgradient wells were below the standard.

TKN:

TKN does not have a groundwater standard or criteria. Each of the downgradient wells show elevated concentrations of TKN as compared to MW-1. The average TKN concentration at the upgradient well was 1.26 mg/L while MW-2, MW-3, and MW-4 had average concentrations of 2.54 mg/L, 77.7 mg/L, and 10 mg/L respectively. Overall the regression analysis indicates a weak negative trend in TKN levels at MW-1 and MW-3 and a weak positive trend at MW-2 and MW-4.

Ammonia:

Ammonia concentrations are considerably elevated above the groundwater standard at all of the downgradient wells. MW-2 and MW-3 exhibit a very weak upward trend, while MW-4 has a moderate negative trend.

Zinc

Zinc concentrations at MW-2 are statistically significantly greater than concentrations found at MW-1, the ambient well. However, the concentrations exhibit a decreasing trend and are below the standard with the exception of one data point. Zinc concentrations at MW-3 and MW-4 are also decreasing and are not significantly different from MW-1. The majority of the datapoints at MW-3 and MW-4 are below the standard.

Copper:

The data indicate no exceedances of the copper groundwater standard at any of the wells. Additionally, the concentrations at the downgradient wells are not significantly greater than those at the upgradient well.

BOD:

BOD does not have a groundwater standard or criterion. The BOD concentration data at the downgradient wells show a weak decreasing trend and with the exception of MW-2, there is no significant difference in the downgradient concentrations.

COD:

COD does not have a groundwater standard or criterion. There is no indication of contamination at MW-3 and MW-4. MW-2 does display a weak increasing trend in the COD concentrations in addition to the data being significantly different from that at MW-1.

<u>Sulfate</u>

The sulfate criterion for this facility is 25 mg/L. Seventeen of the nineteen datapoints at MW-2 are greater than the criterion, an indication of contamination. Additionally the data at MW-2 is significantly greater than that at MW-1. The difference between sulfate concentrations at the upgradient well and MW-3 and MW-4 is not significant. The majority of datapoints collected at MW-3 and MW-4 are well below the standard. There is a strong positive trend in concentrations at MW-2 and a slight increasing trend at MW-3.

TDS:

TDS concentrations in MW-2 are significantly elevated as compared to MW-1. TDS concentrations at MW-3 and MW-4 are not significantly different from those at MW-1.Most of the downgradient data is in excess of the 250 mg/L standard. The downgradient wells show moderate increasing trends in TDS concentrations, though the same trend is apparent at the upgradient well.

Sodium:

Sodium concentrations at the downgradient wells are all in excess of the criterion of 25 mg/L with the exception of one data point collected at MW-2. However, the concentrations do not exceed the statewide standard of 270 mg/L. Sodium concentrations at the background well are consistently below the criterion. MW-2 and MW-4 exhibit slight positive trends in sodium concentrations over time. MW-2 and MW-4 data is statistically significantly different than that at MW-1.

pH:

Downgradient pH levels show no significant elevations as compared to MW-1. Additionally, there are no excursions from the criterion at the downgradient wells.

Specific Conductance:

There is no groundwater criterion for specific conductance, however the parameter is an indicator of ions in the groundwater and is suggestive of the presence of other pollutants such as chlorides, nitrates, phosphates and sodium. As such, increased specific conductivity values are expected at wells where other parameters have been noted at elevated concentrations. All downgradient wells show significant elevations relative to MW-1. The regression analysis indicates a moderate decreasing trend in the conductance at MW-1, MW-2, and MW-4.

Conclusion:

The greatest level of impact relative to the up-gradient well appears to be at MW-2. MW-2 is located directly east of the former wastewater lagoons so this is to be expected. In general, ammonia, chlorides, BOD/COD, TDS, and sulfate appear to be the parameters of greatest concern. Concentrations of these pollutants are either present at levels greater than the standard/criterion or are found in concentrations in the downgradient wells that are statistically significantly greater than that at the up-gradient well. That being said, increasing trends in pollutant levels at the downgradient wells are weak and nonexistent in many instances. In some cases the pollutant levels are stagnant or may be decreasing slightly. The source of the contamination, the wastewater lagoons, have been closed and reclaimed. As such, it is anticipated that the groundwater contamination will naturally attenuate over time.

Certain parameters are consistently below the groundwater standard/criterion at the down-gradient wells. This is the case for nitrates, nitrites, zinc, and copper. The concentration of these parameters is also not significantly greater at the down-gradient wells (with the exception of zinc at MW-2).

Recommendation:

The lagoon closure plan approved in 1992 relies on removal of the source of contamination, groundwater remediation (pumping and treatment for one year following approval) and long term groundwater monitoring. Natural attenuation of the groundwater is expected over time. The greatest contamination is apparent in MW-2 which is located in closest proximity to the wastewater lagoons. MW-3 and MW-4 located west of the lagoons do not exhibit the same level of groundwater contamination, suggesting that the plume is localized.

Based on this evaluation it appears that contamination is still present for certain parameters but that some of the presently monitored parameters are no longer impacting the groundwater at the site. Since the facility is operating under a monitoring plan that is over 20 years old and may no

longer appropriately target groundwater concerns on the site, staff recommends a revised groundwater monitoring plan be developed. A revised groundwater monitoring plan may be incorporated into the permit via a special condition that requires submission of a revised plan within a certain timeframe following the permit reissuance.

Appendix- Data, Figures, and Tables

- 1) Groundwater Contour Map
- 2) Groundwater Monitoring Data Analysis for:
 - Chloride
 - Nitrate
 - Nitrite
 - TKN
 - Ammonia
 - Zinc
 - Copper
 - BOD₅
 - COD
 - Sulfate
 - TDS
 - Sodium
 - Specific Conductance
 - pH

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	Chloride
Applicable GW Standard (if none leave	
Applicable GW Criteria (if none leave blank):	25
Concentration Units (all data):	mg/L

		Data Entry						
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ		
	Sample or Report	Background	Compliance	Compliance	Compliance	Compliance	Compliance	
L	Date (ascending)	Well Data	Well #1	Well #2	Well #3	Well #4	Well #5	
1	3/2/2005	3	38	76	21	43		
3	11/1/2005 2/28/2006	3	38 39	74 69	35 44	28 14		
4	4/27/2006	3	39	65	44	12		
5	7/3/2006	3	37	63	46	7		
6	10/13/2006	4	47	71	50	5		
7	2/9/2007	3	40	79	50	36		
8	5/2/2007	2	37	40	55	41		
9	7/26/2007	2	37	59	47	47		
10	10/15/2007	2	38	60	49	50		
11	1/28/2008	2.6	37.2	56.2	51.5	34.8		
12	4/25/2008	3	38.9	54.2	50.2	34.5		
13	8/11/2008	2.6	39.4	0.1	49.9	34.4		
14	1/15/2009	2.9	38.1	54.3	45.7	25.7		
15	4/9/2009	2.9	39.5	58.1	49.6	33.4		
16	9/2/2009	4.62	38.8	57.2	48.9	26.3		
17	10/16/2009	2.8	38.3	55.4	49.9	25.8		
18	1/14/2010	2.4	38.1	56.2	50.5	39.3		
19	7/14/2010	2.4	35.6	5.8	49.2	39.7		
20	8/16/2010	2.4		49	57	24.5		
21	10/28/2010	3.9		55.5	54.5	24.4		
22	3/15/2011	2.7		53.9	49.4	38.8		
23	6/21/2011	2.8		3.3	1.9	37.2		
24	9/19/2011	2.3		56.4	52.2	30.3		
25	12/13/2011	5.2		60.3	56.1	37.7		
26	2/22/2012	2.4		60.7	58.1			
27	9/12/2012	2.2		60.4	53.9			
28	12/6/2012	2.1		59.8	54.2			
29	2/19/2013	7.1		66.8	61.5			
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43								
44								
45								
46								
47								
48								
49								
50								

		Results: Significance to Background **						
	Distribution Tests		Non-normal Test	Normal Tests				
	Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test Wilcoxon Rank Sum Test T-test (lognormal		T-test (lognormal)				
MW1 Background Well	Not normal	Not normal	N/A					
MW2 Compliance Well #1	Not normal	Not normal	Significant	Significant	Significant			
MW3 Compliance Well #2	Not normal	Not normal	Not Significant	Significant	Significant			
MW4 Compliance Well #3	Not normal	Not normal	Not Significant	Significant	Significant			
CB Compliance Well #4	Normal	Not normal	Significant	Significant	Significant			
Compliance Well #5			·					

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pogreon	Pearson Interpretation	
		Slope	Correlation (R)	Linear Trend	Degree of Data Linearity
MW1	Background Well	0.000258756	0.204365873	Slight Increase	Very Weak
MW2	Compliance Well #1	-0.00033963	-0.076523718	Slight Decrease	Very Weak
MW3	Compliance Well #2	-0.006313803	-0.277206233	Slight Decrease	Moderately Weak
MW4	Compliance Well #3	0.004418996	0.327060649	Slight Increase	Moderately Weak
CB	Compliance Well #4	0.003978796	0.250589568	Slight Increase	Moderately Weak
	Compliance Well #5				

Results: Groundwater Standards/Criteria Comparison

		Groundwate	er Standard	Groundwa	ter Criteria	Total No. of Data
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW1	Background Well			0	0%	29
MW2	Compliance Well #1			19	100%	19
MW3	Compliance Well #2			26	89.7%	29
MW4	Compliance Well #3			27	93.1%	29
CB	Compliance Well #4			19	76%	25
	Compliance Well #5					

		Maximum Value	Minimum Value	Average		
MW1	Background Well	7.100	2.000	3.011		
MW2	Compliance Well #1	47.000	34.000	38.363	_	
MW3	Compliance Well #2	79.000	0.100	54.469		
MW4	Compliance Well #3	61.500	1.900	47.662		
CB	Compliance Well #4	50.000	5.000	30.792		
	Compliance Well #5					

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	Nitrate
Applicable GW Standard (if none leave	5
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	mg/L

		Data Entry					
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
ı	Sample or Report	Background	Compliance	Compliance	Compliance	Compliance	Compliance
	Date (ascending)	Well Data	Well #1	Well #2	Well #3	Well #4	Well #5
1	3/2/2005	0.21	0.19	0.01	0.01	1.5	
2	11/1/2005	0.14	0.01	0.01	0.01	6.44	
3	2/28/2006	0.01	0.01	0.01	0.01	0.01	
4	4/27/2006	0.13	0.08	0.01	0.01	4.54	
5 6	7/3/2006 10/13/2006	0.13 0.14	0.01 0.01	0.05 0.05	0.01 0.05	2.32 0.59	
7	2/9/2007	0.14	0.01	0.03	0.03	2.96	
8	5/2/2007	0.14	0.03	0.03	0.04	3.5	
9	7/26/2007	0.18	0.16	0.06	0.06	2.55	
10	10/15/2007	0.11	0.01	0.08	0.05	1.88	
11	1/28/2008	0.21	0.02	0.02	0.04	5.62	
12	4/25/2008	0.19	0.02	0.02	0.07	1.31	
13	8/11/2008	0.13	0.02	0.01	0.09	1.81	
14	1/15/2009	0.13	0.02	0.06	0.03	3.71	
15	4/9/2009	0.58	0.06	0.01	0.04	5.02	
16	9/2/2009	0.05	0.02	0.08	0.03	6.18	
17	10/16/2009	0.14	0.02	0.53	0.27	10.5	
18	1/14/2010	0.13	0.04	0.03	0.04	2.89	
19	7/14/2010	0.21	0.14	0.02	0.05	3.32	
20	8/16/2010	0.11		0.05	0.06	6.42	
21	10/28/2010	0.09		0.05	0.14	3.3	
22	3/15/2011	0.12		0.01	0.01	2.37	
23	6/21/2011	0.2		0.04	0.03	3.06	
24	9/19/2011	0.11		0.07	0.03	3.9	
25	12/13/2011	0.12		0.32	0.19	3.28	
26	2/22/2012	0.12		0.1	0.1		
27	9/12/2012	0.2		0.1	0.1		
28	12/6/2012	0.1		0.2	0.1		
29	2/19/2013	0.1		0.7	0.1		
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45			 	 	 	 	
46 47			 	 	 	 	
47			 	 	 	 	
48			 	 	 	 	
49 50			 	 	 	 	
55			l	l	l	l	l

			Results: Significance to Background **							
		Distribut	Distribution Tests		Normal Tests					
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test			T-test (lognormal)				
MW1	Background Well	Not normal	Not normal		N/A					
MW2	Compliance Well #1	Not normal	Not normal	Not Significant	Not Significant	Not Significant				
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Not Significant	Not Significant				
MW4	Compliance Well #3	Not normal	Not normal	Not Significant	Not Significant	Not Significant				
CB	Compliance Well #4	Normal	Not normal	Not Significant	Significant	Significant				
	Compliance Well #5									

Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation	
		Slope	Correlation (R)	Linear Trend	Degree of Data Linearity
MW1	Background Well	-3.93487E-06	-0.035569169	Slight Decrease	Very Weak
MW2	Compliance Well #1	-4.72733E-06	-0.039492032	Slight Decrease	Very Weak
MW3	Compliance Well #2	8.60636E-05	0.464508052	Slight Increase	Moderately Weak
MW4	Compliance Well #3	3.19044E-05	0.468124407	Slight Increase	Moderately Weak
CB	Compliance Well #4	0.000781627	0.256960528	Slight Increase	Moderately Weak
	Compliance Well #5				

Results: Groundwater Standards/Criteria Comparison

		Groundwate	Groundwater Standard		Groundwater Criteria		
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Total No. of Data Points	
MW1	Background Well	0	0%			29	
MW2	Compliance Well #1	0	0%			19	
MW3	Compliance Well #2	0	0%			29	
MW4	Compliance Well #3	0	0%			29	
CB	Compliance Well #4	6	24%			25	
	Compliance Well #5						

		Maximum Value	Minimum Value	Average	
MW1	Background Well	0.580	0.010	0.150	
MW2	Compliance Well #1	0.220	0.010	0.057	
MW3	Compliance Well #2	0.700	0.010	0.097	
MW4	Compliance Well #3	0.270	0.010	0.062	
CB	Compliance Well #4	10.500	0.010	3.559	
	Compliance Well #5				

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	Nitrite
Applicable GW Standard (if none leave	0.025
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	mg/L

Sample or Report Date (ascending) Date (ascending) Well Date Well #1 Well #1 Well #2 Well #3 Well #4 Well #5 Well #4 Well #5 Well #4 Well #5 Well #5 Well #4 Well #5 Well #6 Well #5 Well #5 Well #6 Well #6 Well #6 Well #6 Well #5 Well #6 Well					Data	Entry		
Date (ascending) Well Data Well #1 Well #2 Well #3 Well #4 Well #5		Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
1 3/2/2005								Compliance Well #5
2	1	. 0,						
3								
4 4/27/2006 0.005								
5								
6	5							
8								
8	7	2/9/2007	0.005	0.005	0.005	0.005	0.005	
10	8	5/2/2007	0.005	0.005	0.005		0.07	
11	9	7/26/2007	0.005	0.005	0.005	0.005	0.005	
12	10	10/15/2007		0.005	0.005	0.005	0.005	
13	11	1/28/2008	0.005	0.005	0.005	0.005	0.005	
14	12	4/25/2008		0.005	0.005	0.005	0.008	
15								
16 9/2/2009 0.01 0.043 0.007 0.011 0.005 17 10/16/2009 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 11 11/4/2010 0.005 0.00								
17								
18								
19								
20 8/16/2010 0.005 0.005 0.005 0.005 0.005 21 10/28/2010 0.01 0.01 0.01 0.01 0.01 0.01 0.01								
21	- 1			0.009				
22 3/15/2011 0.01 0.01 0.01 0.01 0.01 23 6/21/2011 0.005 0.025 0.005 0.005 24 9/19/2011 0.005 0.005 0.005 0.005 25 12/13/2011 0.005 0.005 0.005 0.005 26 2/22/2012 0.05 0.05 0.05 0.05 27 9/12/2012 0.05 0.05 0.05 28 12/6/2012 0.05 0.05 0.05 0.05 29 2/19/2013 0.05 0.05 0.05 0.05 31 31 31 32 33 34 34 34 34 34 34 34 34 34 34 34 34								
23 6/21/2011 0.005 0.025 0.005 0.005 24 9/19/2011 0.005 0.00								
24 9/19/2011 0.005 0.005 0.005 0.005 0.005 25 12/13/2011 0.005 0.0								
25	- 1							
26								
27 9/12/2012 0.05 0.05 0.05 0.05 28 12/6/2012 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	- 1						0.000	
28								
29	28							
31	29							
32 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	30							
33 34 35 36 37 37 37 40 40 41 41 42 42 43 44 44 45 46 47 48 49	31							
34								
35								
36								
37 38 39 40 40 41 41 42 43 43 44 44 45 46 47 48								
38 39 40 40 40 41 41 42 43 44 44 45 46 46 47 47 48 49 49 4								
39								
40								
41								
42 43 44 44 45 46 47 47 48								
43								
44								
45	-							
46					İ	i		
48 49 9	46							
49	47							
	48							
50								
	50							

			Results: Significance to Background **						
		Distribut	ion Tests	Non-normal Test	Norm	al Tests			
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test	T-test (lognormal)			
MW1	Background Well	Not normal	Not normal	N/A					
MW2	Compliance Well #1	Not normal	Not normal	Not Significant	Not Significant	Not Significant			
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Not Significant	Not Significant			
MW4	Compliance Well #3	Not normal	Not normal	Not Significant	Not Significant	Not Significant			
CB	Compliance Well #4	Not normal Not normal		Not Significant	Not Significant	Not Significant			
	Compliance Well #5								

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line Slope Pearson Correlation (R)		Interpretation		
				Linear Trend	Degree of Data Linearity	
MW1	Background Well	1.145E-05	0.627337558	Slight Increase	Moderately Strong	
MW2	Compliance Well #1	5.16967E-06	0.337917565	Slight Increase	Moderately Weak	
MW3	Compliance Well #2	1.21878E-05	0.661632255	Slight Increase	Moderately Strong	
MW4	Compliance Well #3	1.15453E-05	0.6341101	Slight Increase	Moderately Strong	
CB	Compliance Well #4	-5.64644E-06	-0.056590479	Slight Decrease	Very Weak	
	Compliance Well #5					

Results: Groundwater Standards/Criteria Comparison

		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW1	Background Well	4	13.8%			29
MW2	Compliance Well #1	1	5.3%			19
MW3	Compliance Well #2	5	17.2%			29
MW4	Compliance Well #3	4	13.8%			29
CB	Compliance Well #4	3	12%			25
	Compliance Well #5					

		Maximum Value	Minimum Value	Average	
MW1	Background Well	0.050	0.005	0.012	
MW2	Compliance Well #1	0.043	0.005	0.007	
MW3	Compliance Well #2	0.050	0.005	0.012	
MW4	Compliance Well #3	0.050	0.005	0.012	
CB	Compliance Well #4	0.370	0.005	0.025	
	Compliance Well #5				

-		
	Facility Name:	Tyson Foods - Glen Allen
	Permit No.:	VA0004031
	Monitoring Parameter:	Total Kjeldahl Nitrogen
	Applicable GW Standard (if none leave	
	Applicable GW Criteria (if none leave blank):	
	Concentration Units (all data):	mg/L

		Data Entry					
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5
1	3/2/2005	0.5	1.7	126	8.5	35.5	WCII #3
2	11/1/2005	0.5	1.85	97.2	4.98	5.07	
3	2/28/2006	0.5	1.51	77.3	3.75	0.5	
4	4/27/2006	0.5	1.4	83.2	3.75	0.5	
5	7/3/2006	0.5	1.55	114	3.19	0.55	
6	10/13/2006	0.5	1.54	82.7	3.04	3.98	
7	2/9/2007	0.5	1.21	62.9	2.84	10.8	
8	5/2/2007	0.5	1.34	2.48	81.6	8.55	
9	7/26/2007	0.5	1.56	82	2.51	17.8	
10	10/15/2007	0.5	1.69	90.1	2.6	22.7	
11	1/28/2008	0.5	2.6	86.1	3.7	4	
12	4/25/2008	15	5.2	78.4	25.3	3.1	
13	8/11/2008	2.6	2.3	0.5	4.4	6.2	
14	1/15/2009	2.24	6.72	121.8	6.72	4.76	
15	4/9/2009	5.38	9.68	81.1	6.18	0.5	
16	9/2/2009	0.12	2.1	71.5	1.63	0.5	
17	10/16/2009	0.5	1.9	102.7	1.76	0.5	
18	1/14/2010	0.5	1.6	70.6	1.2	3.9	
19	7/14/2010	0.5	0.9	71.8	1	3.1	
20	8/16/2010	0.5		1.36	26	0.4	
21	10/28/2010	0.42		114.1	1.88	0.74	
22	3/15/2011	0.2		71.6	1.6	3.7	
23	6/21/2011	0.2		58.6	1.62	3.76	
24	9/19/2011	2.06		92.44	2.84	1.24	
25	12/13/2011	0.2		81.2	0.3	3.3	
26	2/22/2012	0.2		83.5	1.18		
27	9/12/2012	0.2		85.5	1.33		
28	12/6/2012	0.2		84.3	85.6		
29 30	2/19/2013	0.2		80	1.13		
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							

			Results: Significance to Background **						
		Distributi	Distribution Tests		Normal Tests				
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test T-test (lognorma				
MW1	Background Well	Not normal	Not normal		N/A				
MW2	Compliance Well #1	Not normal	Not normal	Significant	Significant	Significant			
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Significant	Significant			
MW4	Compliance Well #3	Not normal	Not normal	Not Significant	Significant	Significant			
CB	Compliance Well #4	Not normal Not normal		Not Significant	Significant	Significant			
	Compliance Well #5								

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation		
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity	
MW1	Background Well	-0.000321322	-0.096571571	Slight Decrease	Very Weak	
MW2	Compliance Well #1	0.001202176	0.305435377	Slight Increase	Moderately Weak	
MW3	Compliance Well #2	-0.003409417	-0.094450221	Slight Decrease	Very Weak	
MW4	Compliance Well #3	0.001560642	0.06287564	Slight Increase	Very Weak	
CB	Compliance Well #4	-0.00492511	-0.440949808	Slight Decrease	Moderately Weak	
	Compliance Well #5					

Results: Groundwater Standards/Criteria Comparison

		Groundwate	er Standard	Groundwa	Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW1	Background Well					29
MW2	Compliance Well #1					19
MW3	Compliance Well #2					29
MW4	Compliance Well #3					29
CB	Compliance Well #4					25
	Compliance Well #5					

		Maximum Value	Minimum Value	Average	
MW1	Background Well	15.000	0.120	1.266	
MW2	Compliance Well #1	9.680	0.900	2.545	
MW3	Compliance Well #2	126.000	0.500	77.758	
MW4	Compliance Well #3	85.600	0.300	10.073	
CB	Compliance Well #4	35.500	0.400	5.826	
	Compliance Well #5				

-		
	Facility Name:	Tyson Foods - Glen Allen
	Permit No.:	VA0004031
	Monitoring Parameter:	Ammonia
	Applicable GW Standard (if none leave	0.025
	Applicable GW Criteria (if none leave blank):	
	Concentration Units (all data):	mg/L

		Data Entry					
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5
1	3/2/2005	0.08	0.07	1.64	74.4	5.86	Well #3
2	11/1/2005	0.05	1.46	91.2	4.87	4.42	
3	2/28/2006	0.005	1.18	80.2	3.28	0.005	
4	4/27/2006	0.005	1.15	85.8	2.86	0.06	
5	7/3/2006	0.005	1.34	82.6	2.8	0.09	
6	10/13/2006	0.005	1.43	80.4	2.27	0.005	
7	2/9/2007	0.005	1.27	78.7	1.52	9.99	
8	5/2/2007	0.005	1.25	1.74	85	6.94	
9	7/26/2007	0.005	1.2	92.2	1.88	15.9	
10	10/15/2007	0.005	1.46	98.1	1.74	17.8	
11	1/28/2008	0.01	1.54	74.64	2.04	2.53	
12	4/25/2008	0.02	1.09	68.69	1.93	1.82	
13	8/11/2008	0.02	1.43	0.01	1.71	2.82	
14	1/15/2009	0.02	1.45	78.75	1.73	0.01	
15	4/9/2009	0.01	1.17	65.8	1.22	0.27	
16	9/2/2009	0.01	1.6	63	1.5	0.05	
17	10/16/2009	0.005	0.74	81.2	1.42	0.03	
18	1/14/2010	0.01	1.1	64.8	1.08	3.69	
19	7/14/2010	0.005	0.77	60.3	0.92	2.74	
20	8/16/2010	0.02		1.09	19.7	0.06	
21	10/28/2010	0.01		66.3	0.82	0.02	
22	3/15/2011	0.005		67.2	1.29	3.2	
23	6/21/2011	0.005		54.7	1.1	3.37	
24	9/19/2011	0.01		51.3	0.75	0.17	
25	12/13/2011	0.005		66.49	0.1	2.47	
26	2/22/2012	0.005		82.1	0.78		
27	9/12/2012	0.005		93.6	1.15		
28	12/6/2012	0.005		85.6	0.92		
29 30	2/19/2013	0.005		89.3	0.75		
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							

			Results: Significance to Background **						
		Distribution Tests		Non-normal Test	Normal Tests				
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test	T-test (lognormal)			
MW1	Background Well	Not normal	Not normal	N/A					
MW2	Compliance Well #1	Not normal	Not normal	Significant	Significant	Significant			
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Significant	Significant			
MW4	Compliance Well #3	Not normal	Not normal	Not Significant	Significant	Significant			
CB	Compliance Well #4	Not normal	Normal	Not Significant	Significant	Significant			
	Compliance Well #5								

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation	
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity
MW1	Background Well	-7.95786E-06	-0.425929335	Slight Decrease	Moderately Weak
MW2	Compliance Well #1	6.35036E-05	0.100920265	Slight Increase	Very Weak
MW3	Compliance Well #2	0.003238474	0.096339831	Slight Increase	Very Weak
MW4	Compliance Well #3	-0.00854358	-0.360525665	Slight Decrease	Moderately Weak
CB	Compliance Well #4	-0.001688063	-0.259241405	Slight Decrease	Moderately Weak
	Compliance Well #5				

Results: Groundwater Standards/Criteria Comparison

		Groundwater Standard		Groundwater Criteria		Total No. of Data
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW1	Background Well	2	6.9%			29
MW2	Compliance Well #1	19	100%			19
MW3	Compliance Well #2	28	96.6%			29
MW4	Compliance Well #3	29	100%			29
CB	Compliance Well #4	21	84%			25
	Compliance Well #5					

		Maximum Value	Minimum Value	Average	
MW1	Background Well	0.080	0.005	0.012	
MW2	Compliance Well #1	1.600	0.070	1.195	
MW3	Compliance Well #2	98.100	0.010	65.774	
MW4	Compliance Well #3	85.000	0.100	7.639	
CB	Compliance Well #4	17.800	0.005	3.373	
	Compliance Well #5			_	

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	Zinc
Applicable GW Standard (if none leave	0.05
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	mg/L

		Data Entry					
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5
1	3/2/2005	0.01	0.28	0.23	0.14	0.08	
2	11/1/2005	0.01	0.01	0.01	0.01	0.21	
3	2/28/2006	0.01	0.04	0.01	0.02	0.02	
4	4/27/2006	0.01	0.01	0.01	0.02	0.02	
5	7/3/2006	0.01	0.01	0.02	0.04	0.02	
6	10/13/2006	0.01	0.03	0.01	0.01	0.02	
7	2/9/2007	0.01	0.01	0.01	0.01	0.039	
8	5/2/2007	0.01	0.01	0.01	0.01	0.019	
9	7/26/2007	0.02	0.02	0.02	0.022	0.033	
10	10/15/2007	0.01	0.01	0.02	0.01	0.01	
11	1/28/2008	0.01	0.01	0.012	0.015	0.034	
12	4/25/2008	0.01	0.02	0.024	0.03	0.03	
13	8/11/2008	0.01	0.017	0.01	0.026	0.056	
14	1/15/2009	0.01	0.015	0.01	0.01	0.01	
15	4/9/2009	0.01	0.01	0.019	0.024	0.029	
16	9/2/2009	0.01	0.012	0.02	0.025	0.05	
17	10/16/2009	0.01	0.01	0.01	0.01	0.037	
18	1/14/2010	0.01	0.01	0.01	0.011	0.014	
19	7/14/2010	0.01	0.01	0.01	0.01	0.01	
20	8/16/2010	0.01		0.01	0.01	0.01	
21	10/28/2010	0.01		0.05	0.05	0.05	
22	3/15/2011	0.01		0.01	0.01	0.01	
23	6/21/2011	0.01		0.01	0.01	0.01	
24	9/19/2011	0.01		0.01	0.01	0.01	
25	12/13/2011	0.01		0.01	0.01	0.01	
26	2/22/2012	0.01		0.01	0.0128		
27	9/12/2012	0.01		0.01	0.0167		
28	12/6/2012	0.01		0.05	0.015		
29	2/19/2013	0.01		0.01	0.0172		
30							
31							
32							
33							
34							
35							
36							
37							
38 39							
40							
41							
42							
43							
44 45					 		
45 46					 		
46 47					 		
47					 		
48 49					 		
50					 		
50					·		

			Results: Significance to Background **					
		Distribution Tests		Non-normal Test	Normal Tests			
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test T-test (lognorma			
MW1	Background Well	Not normal	Not normal		N/A			
MW2	Compliance Well #1	Not normal	Not normal	Significant	Not Significant	Significant		
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Not Significant	Significant		
MW4	Compliance Well #3	Not normal	Not normal	Not Significant	Significant	Significant		
CB	Compliance Well #4	Not normal	Not normal Not normal		Significant	Significant		
	Compliance Well #5							

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation	
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity
MW1	Background Well	-3.01324E-07	-0.139070817	Slight Decrease	Very Weak
MW2	Compliance Well #1	-4.98084E-05	-0.461240933	Slight Decrease	Moderately Weak
MW3	Compliance Well #2	-1.35405E-05	-0.281201858	Slight Decrease	Moderately Weak
MW4	Compliance Well #3	-1.03782E-05	-0.35741157	Slight Decrease	Moderately Weak
CB	Compliance Well #4	-2.39711E-05	-0.432164207	Slight Decrease	Moderately Weak
	Compliance Well #5			·	

Results: Groundwater Standards/Criteria Comparison

		Groundwate	er Standard	Groundwater Criteria		Total No. of Data
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW1	Background Well	0	0%	OV Ontona	OTT OTHORIZ	29
MW2	Compliance Well #1	1	5.3%			19
MW3	Compliance Well #2	3	10.3%			29
MW4	Compliance Well #3	2	6.9%			29
CB	Compliance Well #4	5	20%			25
	Compliance Well #5					

		Maximum Value	Minimum Value	Average	
MW1	Background Well	0.020	0.010	0.010	
MW2	Compliance Well #1	0.280	0.010	0.029	
MW3	Compliance Well #2	0.230	0.010	0.023	
MW4	Compliance Well #3	0.140	0.010	0.021	
CB	Compliance Well #4	0.210	0.010	0.034	
	Compliance Well #5				

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	Copper
Applicable GW Standard (if none leave	1.0
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	mg/L

		Data Entry					
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
ſ	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5
1	3/2/2005	0.01	0.01	0.01	0.01	0.01	
2	11/1/2005	0.01	0.01	0.01	0.01	0.01	
3	2/28/2006	0.01	0.01	0.01	0.01	0.01	
4	4/27/2006	0.01	0.01	0.01	0.01	0.01	
5	7/3/2006	0.01	0.01	0.01	0.01	0.01	
6	10/13/2006	0.01	0.01	0.01	0.01	0.01	
7	2/9/2007	0.001	0.0024	0.002	0.002	0.0024	
8	5/2/2007	0.01	0.01	0.01	0.01	0.01	
9	7/26/2007	0.01	0.01	0.01	0.01	0.01	
10	10/15/2007	0.01	0.01	0.01	0.01	0.01	
11	1/28/2008	0.01	0.01	0.01	0.01	0.01	
12	4/25/2008	0.01	0.01	0.039	0.01	0.01	
13	8/11/2008	0.01	0.01	0.02	0.01	0.01	
14	1/15/2009	0.01	0.01	0.01	0.01	0.01	
15	4/9/2009	0.01	0.01	0.01	0.01	0.01	
16	9/2/2009	0.01	0.01	0.064	0.01	0.01	
17	10/16/2009	0.01	0.01	0.052	0.01	0.01	
18	1/14/2010	0.01	0.01	0.01	0.01	0.01	
19	7/14/2010	0.01	0.01	0.01	0.01	0.01	
20	8/16/2010	0.01		0.01	0.01	0.01	
21	10/28/2010	0.02		0.02	0.02	0.02	
22	3/15/2011	0.02		0.02	0.02	0.02	
23	6/21/2011	0.02		0.02	0.02	0.02	
24	9/19/2011	0.02		0.02	0.02	0.02	
25	12/13/2011	0.02		0.02	0.02	0.02	
26	2/22/2012	0.01		0.01	0.01		
27	9/12/2012	0.01		0.01	0.01		
28	12/6/2012	0.01		0.01	0.01		
29	2/19/2013	0.01		0.01	0.01		
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							

			Results: Significance to Background **						
		Distribut	ion Tests	Non-normal Test	Normal Tests				
	Shapiro-Wilk Log-Normality Test Normality Test		Wilcoxon Rank Sum Test	T-test	T-test (lognormal)				
MW1	Background Well	Not normal	Not normal	N/A					
MW2	Compliance Well #1	Not normal	Not normal	Not Significant	Not Significant	Not Significant			
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Significant	Not Significant			
MW4	Compliance Well #3	Not normal	Not normal	Not Significant	Not Significant	Not Significant			
CB	Compliance Well #4	Not normal Not normal		Not Significant	Not Significant	Not Significant			
	Compliance Well #5								

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation		
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity	
MW1	Background Well	2.27087E-06	0.450307742	Slight Increase	Moderately Weak	
MW2	Compliance Well #1	3.7278E-07	0.121585865	Slight Increase	Very Weak	
MW3	Compliance Well #2	2.41618E-06	0.153365138	Slight Increase	Very Weak	
MW4	Compliance Well #3	2.23262E-06	0.451375778	Slight Increase	Moderately Weak	
CB	Compliance Well #4	4.14964E-06	0.68032008	Slight Increase	Moderately Strong	
	Compliance Well #5			·		

Results: Groundwater Standards/Criteria Comparison

		Groundwate	er Standard	Groundwater Criteria		Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points	
MW1	Background Well	0	0%			29	
MW2	Compliance Well #1	0	0%			19	
MW3	Compliance Well #2	0	0%			29	
MW4	Compliance Well #3	0	0%			29	
CB	Compliance Well #4	0	0%			25	
	Compliance Well #5						

		Maximum Value	Minimum Value	Average	
MW1	Background Well	0.020	0.001	0.011	
MW2	Compliance Well #1	0.010	0.002	0.010	
MW3	Compliance Well #2	0.064	0.002	0.016	
MW4	Compliance Well #3	0.020	0.002	0.011	
CB	Compliance Well #4	0.020	0.002	0.012	
	Compliance Well #5				

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	BOD5
Applicable GW Standard (if none leave	
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	mg/L

		Data Entry					
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
ſ	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5
1	3/2/2005	2	4	8	11	1	Well #3
2							
3	11/1/2005 2/28/2006	3	3 5	5 6	8 12	20 5	
4	4/27/2006	1	5	6	9	1	
5	7/3/2006	1	8	6	14	1	
6	10/13/2006	1	8	11	15	5	
7	2/9/2007	1	1	9	6	1	
8	5/2/2007	1	1	10	11	1	
9	7/26/2007	1	5	6	14	1	
10	10/15/2007	1	5	15	9	1	
11		1	3.2	10.2	5.9	4	
12	1/28/2008 4/25/2008	1	1	9.7	8.3	1	
13	8/11/2008	1	4.1	3	10.8	12.3	
14	1/15/2009	3.9	9.5	11	14.3		
15	4/9/2009	3.9	9.5	8.7	4.8	1	
<u> </u>	9/2/2009	5.3	14.7	11	12.8	1	
16					12.8		
17 18	10/16/2009 1/14/2010	1	5.5 5.6	11.1 10.2	7.3	1	
19	7/14/2010	1	11.6	10.2	6.5	1	
			11.6	7			
20 21	8/16/2010	1			4.4	1	
-	10/28/2010			9.6	7.5	5	
22	3/15/2011	1		5.2	1	11	
23	6/21/2011	1		8.2	11.9	1	
24	9/19/2011	1		6.4	7	11	
25	12/13/2011	1		11	1	1	
26 27	2/22/2012	1		4.4 1	2.8		
-	9/12/2012	1			2.2		
28 29	12/6/2012			1			
30	2/19/2013	1		5.3	2.2		
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
-							
44 45							
46							
47							
48							
49 50							
JU							

			Results: Significance to Background **					
		Distribution Tests		Non-normal Test	Normal Tests			
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test (lognorma			
MW1	Background Well	Not normal	Not normal	N/A				
MW2	Compliance Well #1	Not normal	Not normal	Significant	Significant	Significant		
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Significant	Significant		
MW4	Compliance Well #3	Not normal	Not normal	Not Significant	Significant	Significant		
CB	Compliance Well #4	Not normal	Not normal Not normal		Not Significant	Not Significant		
	Compliance Well #5							

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation		
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity	
MW1	Background Well	-0.000163049	-0.138967337	Slight Decrease	Very Weak	
MW2	Compliance Well #1	0.002424278	0.371763011	Slight Increase	Moderately Weak	
MW3	Compliance Well #2	-0.00122079	-0.3019601	Slight Decrease	Moderately Weak	
MW4	Compliance Well #3	-0.003351111	-0.652900022	Slight Decrease	Moderately Strong	
CB	Compliance Well #4	-0.001873699	-0.314470133	Slight Decrease	Moderately Weak	
	Compliance Well #5		_			

Results: Groundwater Standards/Criteria Comparison

		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW1	Background Well					29
MW2	Compliance Well #1					19
MW3	Compliance Well #2					29
MW4	Compliance Well #3					29
CB	Compliance Well #4					25
	Compliance Well #5					

		Maximum Value	Minimum Value	Average	
MW1	Background Well	5.300	1.000	1.352	
MW2	Compliance Well #1	14.700	1.000	5.326	
MW3	Compliance Well #2	15.000	1.000	7.483	
MW4	Compliance Well #3	15.000	1.000	8.048	
CB	Compliance Well #4	20.000	1.000	2.812	
	Compliance Well #5				

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	COD
Applicable GW Standard (if none leave	
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	ma/L

		Data Entry					
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
I	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5
1	3/2/2005	35	67	74	104	41	
2	11/1/2005	2	2	52	52	24	
3	2/28/2006	28	56	69	84	23	
4	4/27/2006	2	2	62	37	2	
5	7/3/2006	37	16	142	65	23	
6	10/13/2006	2	15	71	45	26	
7	2/9/2007	2	2	59	35	17	
8	5/2/2007	2	21	51	72	21	
9	7/26/2007	2	2	37	27	2	
10	10/15/2007	2	31	75	43	33	
11	1/28/2008	15.7	43.1	82.3	66.6	23.5	
12	4/25/2008	51	62	92	76	28	
13	8/11/2008	20.2	44.4	2	56.7	30.3	
14	1/15/2009	30	50	92	50	24	
15	4/9/2009	9.3	18.5	74.1	38.9	9.3	
16	9/2/2009	33.3	62.7	101.9	70.6	13.7	
17	10/16/2009	28.3	22.7	94.4	37.8	7.6	
18	1/14/2010	7.6	51.4	87.6	57.2	22.9	
19	7/14/2010	12.5	50	64.3	85.7	21.4	
20	8/16/2010	14.8		48.1	66.7	22.2	
21	10/28/2010	9.5		89.7	43.1	25.9	
22	3/15/2011	11.8		92.1	64.7	17.6	
23	6/21/2011	7.3		94.6	40	25.5	
24	9/19/2011	11.1		100	48.2	25.9	
25	12/13/2011	<4.0		84.9	24.5	18.9	
26	2/22/2012	<10		44.3	35		
27	9/12/2012	<10		50.7	23		
28	12/6/2012	<10		50.9	20.4		
29	2/19/2013	<10		50.4	25.5		
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							
•				_			

		Results: Significance to Background **						
		Distribution Tests		Non-normal Test	Normal Tests			
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test T-test (lognormal			
MW1	Background Well	Not normal	Not normal	N/A				
MW2	Compliance Well #1	Not normal	Not normal	Significant	Significant	Significant		
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Significant	Significant		
MW4	Compliance Well #3	Not normal	Not normal	Not Significant	Significant	Significant		
CB	Compliance Well #4	Not normal Not normal I		Not Significant	Significant	Significant		
	Compliance Well #5							

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation		
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity	
MW1	Background Well	-0.003992219	-0.255337308	Slight Decrease	Moderately Weak	
MW2	Compliance Well #1	0.012829542	0.318008271	Slight Increase	Moderately Weak	
MW3	Compliance Well #2	-0.001039127	-0.033618387	Slight Decrease	Very Weak	
MW4	Compliance Well #3	-0.011985686	-0.48696993	Slight Decrease	Moderately Weak	
CB	Compliance Well #4	-0.001138088	-0.093534342	Slight Decrease	Very Weak	
	Compliance Well #5					

Results: Groundwater Standards/Criteria Comparison

		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW1	Background Well					29
MW2	Compliance Well #1					19
MW3	Compliance Well #2					29
MW4	Compliance Well #3					29
CB	Compliance Well #4					25
	Compliance Well #5					

		Maximum Value	Minimum Value	Average		
MW1	Background Well	51.000	2.000	15.683		
MW2	Compliance Well #1	67.000	2.000	32.568		
MW3	Compliance Well #2	142.000	2.000	72.010		
MW4	Compliance Well #3	104.000	20.400	51.538		
CB	Compliance Well #4	41.000	2.000	21.148		
	Compliance Well #5			_	_	

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	Sulfate
Applicable GW Standard (if none leave	
Applicable GW Criteria (if none leave blank):	25
Concentration Units (all data):	ma/L

		Data Entry					
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5
1	3/2/2005	1	29.8	9.9	1	12.4	WCII #3
2	11/1/2005	1	27.1	17	1	15.9	
3	2/28/2006	5.5	23.6	17.8	4.64	15.8	
4	4/27/2006	3.21	24	21.1	5.3	20	
5	7/3/2006	11.4	30.2	23.9	6.59	29.9	
6	10/13/2006	6.36	27.1	19.3	1	14.2	
7	2/9/2007	4.9	29.7	24.2	3.29	14.9	
8	5/2/2007	4.15	32.8	3.55	21.1	15	
9	7/26/2007	4.54	29.5	17.9	4.43	6.05	
10	10/15/2007	1	31	12	2.6	3.3	
11	1/28/2008	3.6	36.1	1	1	9.6	
12	4/25/2008	5.4	32.8	5.8	4.6	23.8	
13	8/11/2008	4.4	34.9	2	1	25	
14	1/15/2009	3.5	40.1	7.1	10.4	14.1	
15	4/9/2009	1	41.3	1	1	11.8	
16	9/2/2009	1	42.6	2.4	3.6	1	
17	10/16/2009	3.8	39	4.2	13.4	2.9	
18	1/14/2010	3.1	50	2.9	6.5	18.9	
19	7/14/2010	4.7	49.7	1	7	17.6	
20	8/16/2010	1		4.6	2.5	13.6	
21	10/28/2010	18.2		2.9	3.5	16.6	
22	3/15/2011	6.2		2.9	2.2	18.1	
23	6/21/2011	7		8.5	4.5	20.4	
24	9/19/2011	2.5		6.4	2.4	14	
25	12/13/2011	3.3		13.9	3.7	18.4	
26	2/22/2012	1		28.3	2.9		
27	9/12/2012	1.4		12.7	2.6		
28	12/6/2012	1		11.3	2.5		
29 30	2/19/2013	1		66.8	61.5		
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							

		Results: Significance to Background **						
		Distribution Tests		Non-normal Test	Normal Tests			
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test T-test (lognormal			
MW1	Background Well	Not normal	Not normal	N/A				
MW2	Compliance Well #1	Not normal	Not normal	Significant	Significant	Significant		
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Significant	Significant		
MW4	Compliance Well #3	Not normal	Not normal	Not Significant	Not Significant	Not Significant		
CB	Compliance Well #4	Normal	Normal Not normal I		Significant	Significant		
	Compliance Well #5							

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation	ation	
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity	
MW1	Background Well	-0.000421143	-0.09873543	Slight Decrease	Very Weak	
MW2	Compliance Well #1	0.012318661	0.903648051	Slight Increase	Very Strong	
MW3	Compliance Well #2	0.00131346	0.085148945	Slight Increase	Very Weak	
MW4	Compliance Well #3	0.003558339	0.267261533	Slight Increase	Moderately Weak	
CB	Compliance Well #4	-0.000165419	-0.017937294	Slight Decrease	Very Weak	
	Compliance Well #5					

Results: Groundwater Standards/Criteria Comparison

		Groundwate	er Standard	Groundwater Criteria		Total No. of Data
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW1	Background Well			0	0%	29
MW2	Compliance Well #1			17	89.5%	19
MW3	Compliance Well #2			2	6.9%	29
MW4	Compliance Well #3			1	3.4%	29
CB	Compliance Well #4			2	8%	25
	Compliance Well #5				·	

		Maximum Value	Minimum Value	Average	
MW1	Background Well	18.200	1.000	4.006	
MW2	Compliance Well #1	50.000	23.600	34.279	
MW3	Compliance Well #2	66.800	1.000	12.150	
MW4	Compliance Well #3	61.500	1.000	6.474	
CB	Compliance Well #4	29.900	1.000	14.930	
	Compliance Well #5				

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	Total Dissoved Solids
Applicable GW Standard (if none le	ave
Applicable GW Criteria (if none leav	ve blank): 250
Concentration Units (all data):	mg/L

Sample or Report Date (ascending) Background Well #1 Compliance Well #2 Compliance Well #3 Compliance Well #3 Compliance Well #4 Compliance Well #3 Compliance Well #3 Compliance Well #3 Compliance Well #4 #4					Data	Entry		
Date (ascending) Well Date Well #1 Well #2 Well #3 Well #4 Well #5		Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
1 3/2/2005 10 260 410 104 326 2 11/1/2005 60 268 478 278 304 3 2/28/2006 20 244 496 312 112 4 4/27/2006 42 246 520 350 124 5 7/3/2006 10 228 504 324 90 6 10/13/2006 58 292 592 454 118 7 2/9/2007 36 268 478 318 252 8 5/2/2007 64 312 552 326 466 10 10/15/2007 10 202 460 348 472 11 1/28/2008 34 284 552 378 360 12 4/25/2008 18 296 536 398 206 12 1/28/2008 18 296 536 398 206 13 8/11/2008 26 318 10 424 268 14 11/5/2009 40 314 520 372 214 15 4/9/2009 44 304 504 340 152 16 9/2/2009 56 308 504 378 232 17 10/16/2009 74 382 546 442 258 18 1/14/2010 10 190 370 255 132 19 7/14/2010 52 310 635 460 260 20 8/16/2010 35 488 586 212 21 10/28/2010 32 453 488 586 212 22 3/15/2011 66 534 362 214 24 9/19/2011 54 564 464 206 27 9/12/2012 32 453 463 464 30 33 38 33 34 34 354 564 464 206 31 8/16/2010 35 488 586 212 21 10/28/2010 32 453 464 42 258 31 6/21/2011 54 564 464 206 32 2/2/2012 38 526 468 464 206 32 2/2/2012 38 526 488 586 212 31 1/16/2010 35 488 586 212 31 1/16/2010 35 488 586 212 31 1/16/2010 35 488 586 212 31 1/16/2010 35 488 586 212 31 1/16/2011 54 564 464 206 32 2/2/2012 38 524 494 396 272 34 9/19/2011 54 564 464 206 36 2/2/2012 38 521 396 39 30 30 30 30 30 30 30 30 30 30 30 30 30								
2								Well #5
3								
4 4/27/2006 42 246 520 350 124 5 7/3/2006 10 228 504 324 90 6 6 10/13/2006 58 292 592 454 1118 7 2/9/2007 36 268 478 318 252 9 7/26/2007 64 312 552 326 466 10 10/15/2007 10 202 460 348 472 11 1/26/2008 34 284 552 378 360 12 4/25/2008 18 296 536 398 206 13 8/11/2008 26 318 10 424 268 14 1/15/2009 40 314 520 372 214 15 4/9/2009 44 304 504 340 152 16 9/2/2009 56 308 504 378 232 17 10/16/2009 74 382 546 442 258 18 11/4/2010 52 310 635 460 260 20 8/16/2010 35 488 586 212 21 10/28/2010 35 488 586 212 21 10/28/2010 35 488 586 212 22 3/15/2011 66 534 362 214 23 6/21/2011 70 502 406 272 24 9/19/2011 54 564 464 206 25 12/13/2011 66 466 366 282 26 2/22/2012 32 453 456 38 12/6/2012 37 488 596 38 20 6 37 3 33 3 34 4								
5 7/3/2006 10 228 504 324 90 6 10/13/2006 58 292 592 454 118 7 2/9/2007 36 288 478 318 252 8 5/2/2007 36 254 274 530 230 9 7/26/2007 64 312 552 326 466 10 10/15/2007 10 202 460 348 472 11 1/28/2008 34 284 552 378 360 12 4/25/2008 18 296 536 398 206 13 8/11/2008 26 318 10 424 228 14 1/15/2009 40 314 520 372 214 4/9/2009 56 308 504 378 232 17 10/16/2009 74 382 546 442 258 18								
6								
7								
8	- 1							
9								
10								
11	10							
12								
14	12		18					
15	13		26	318	10	424	268	
16 9/2/2009 56 308 504 378 232 17 10/16/2009 74 382 546 442 258 18 11/14/2010 10 190 370 255 132 19 7/14/2010 52 310 635 460 260 20 8/16/2010 35 488 586 212 11 10/26/2010 32 454 336 256 214 23 36/21/2011 66 534 362 214 23 6/21/2011 70 502 406 272 24 9/19/2011 54 564 466 366 282 266 22/2/2012 38 521 368 521 396 282 26 27 3/15/2011 66 366 366 282 26 27 3/15/2011 66 366 366 282 26 27 3/15/2011 66 366 366 282 36 6/21/2011 54 564 466 366 282 36 6/21/2011 54 564 466 366 282 36 6/21/2011 54 564 466 366 282 36 6/21/2011 66 366 366 282 36 6/21/2011 66 366 366 381 363 36 36 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38		1/15/2009	40	314	520	372	214	
17	15	4/9/2009	44	304	504	340	152	
18	16	9/2/2009	56	308	504	378	232	
19		10/16/2009	74	382	546	442	258	
20 8/16/2010 35 488 586 212 21 10/28/2010 32 454 336 256 22 3/15/2011 66 534 362 214 23 6/21/2011 70 502 406 272 24 9/19/2011 54 564 464 206 25 12/13/2011 66 466 366 282 26 2/22/2012 38 521 396 27 9/12/2012 32 453 456 28 12/6/2012 47 485 404 29 2/19/2013 61 513 413 30 31 513 413 336 31 31 31 32 33 34 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 35 35 35 35 35 35 35 35 35 35 35 35		1/14/2010	10	190	370	255	132	
21	19	7/14/2010	52	310	635	460	260	
22 3/15/2011 66 534 362 214 23 6/21/2011 70 502 406 272 24 9/19/2011 54 564 464 206 25 12/13/2011 66 466 366 282 26 2/22/2012 38 521 396 27 9/12/2012 32 453 456 28 12/6/2012 47 485 404 29 2/19/2013 61 513 413 30 31 31 32 33 33 34 356 357 357 357 357 357 357 357 357 357 357								
23 6/21/2011 70 502 406 272 24 9/19/2011 54 564 464 206 25 12/13/2011 66 466 366 282 26 2/22/2012 38 521 396 27 9/12/2012 32 453 456 28 12/6/2012 47 445 404 29 2/19/2013 61 513 413 30 31 513 413 33 31 31 31 31 31 31 31 31 31 31 31 31 31 3	21	10/28/2010	32		454	336	256	
24 9/19/2011 54 564 466 266 25 12/13/2011 66 466 366 282 26 2/22/2012 38 521 396 27 9/12/2012 32 453 456 28 12/6/2012 47 485 404 29 2/19/2013 61 513 413 30 31 31 32 33 33 34 356 33 38 33 34 356 34 356 35 35 35 35 35 35 35 35 35 35 35 35 35	22	3/15/2011	66		534	362	214	
25								
26			54					
27 9/12/2012 32 453 456 28 12/6/2012 47 485 404 29 2/19/2013 61 513 413 30 31 31 32 33 33 34 34 35 35 36 36 37 37 38 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	25	12/13/2011	66		466	366	282	
28								
29								
30 31 32 33 34 35 36 36 37 38 39 40 41 42 42 43 44 44 45 46 47 48 49								
31		2/19/2013	61		513	413		
32 33 34 35 36 37 38 39 40 41 42 42 43 44 44 45 46 47 48 49								
33 34 34 35 36 37 38 39 40 40 41 41 42 42 43 44 45 46 47 48 49								
34								
35								
36								
37								
38								
39								
41								
41	40							
42	-							
43								
45								
46	44							
47 48 49								
48 49	46							
49	47							
49	48							
50	49							
	50							

			Results: Significance to Background **					
		Distribution Tests		Non-normal Test	Normal Tests			
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test T-test (lognormal)			
MW1	Background Well	Not normal	Not normal	N/A				
MW2	Compliance Well #1	Not normal	Not normal	Significant	Significant	Significant		
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Significant	Significant		
MW4	Compliance Well #3	Not normal	Not normal	Not Significant	Significant	Significant		
CB	Compliance Well #4	Not normal	Not normal Not normal		Significant	Significant		
	Compliance Well #5							

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation		
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity	
MW1	Background Well	0.00883366	0.387992571	Slight Increase	Moderately Weak	
MW2	Compliance Well #1	0.032133468	0.401299236	Slight Increase	Moderately Weak	
MW3	Compliance Well #2	0.015454115	0.11758325	Slight Increase	Very Weak	
MW4	Compliance Well #3	0.047128543	0.454574019	Slight Increase	Moderately Weak	
CB	Compliance Well #4	0.000608502	0.004618194	Slight Increase	Very Weak	
•	Compliance Well #5					

Results: Groundwater Standards/Criteria Comparison

		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of	70 110101010	No. Violations of	% Violations of	Points
		GW Standard	GW Standard	GW Criteria	GW Criteria	
MW1	Background Well			0	0%	29
MW2	Compliance Well #1			14	73.7%	19
MW3	Compliance Well #2			28	96.6%	29
MW4	Compliance Well #3			28	96.6%	29
CB	Compliance Well #4			12	48%	25
	C					

		Maximum Value	Minimum Value	Average	
MW1	Background Well	74.000	10.000	41.414	
MW2	Compliance Well #1	382.000	190.000	277.895	
MW3	Compliance Well #2	635.000	10.000	480.034	
MW4	Compliance Well #3	586.000	104.000	378.621	
CB	Compliance Well #4	472.000	90.000	240.720	
	Compliance Well #5				

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	Sodium
Applicable GW Standard (if none leave	270
Applicable GW Criteria (if none leave blank):	25
Concentration Units (all data):	ma/L

		Data Entry					
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5
1	3/2/2005	6.8	43.3	74.9	35.8	32.5	
2	11/1/2005	3.3	40	103	41.3	28.8	
3	2/28/2006	4.2	41.1	67.4	45.3	15	
4	4/27/2006	4.4	40.2	72.6	46.7	15.4	
5	7/3/2006	4.1	41.2	72	48.9	13.9	
6	10/13/2006	3.7	42	71.5	52.8	9.9	
7	2/9/2007	4.1	43	70	53	34	
8	5/2/2007	5.1	44	55	71	1	
9	7/26/2007	4	45	77	55	49	
10	10/15/2007	3.4	44	67	57	60	
11	1/28/2008	3.26	67.5	117	64.2	49.1	
12	4/25/2008	7.06	52	329	70	41	
13	8/11/2008	3.21	48	1	62	52	
14	1/15/2009	3.49	53	77.1	69.6	37.1	
15	4/9/2009	3.64	63.3	70.9	66.1	28.1	
16	9/2/2009	2.96	46	63.5	65.5	9.04	
17	10/16/2009	2.63	50.9	69.3	71.6	10.1	
18	1/14/2010	3.52	51.7	75.7	74.6	46.8	
19	7/14/2010	3.51	51.2	67.9	65.9	44.8	
20	8/16/2010	2.64		77	77.1	36.6	
21	10/28/2010	2.73		64.9	71.8	35.7	
22	3/15/2011	3.18		80.7	79.7	52.7	
23	6/21/2011	3.13		63.4	67.1	78.7	
24	9/19/2011	2.26		51.1	57.7	30.5	
25	12/13/2011	5.17		85.5	89.4	66.4	
26	2/22/2012	4.8		72	79.1		
27	9/12/2012	3.35		68	78.5		
28	12/6/2012	3.24		64.2	80.7		
29 30	2/19/2013	3.85		64.5	80		
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45				İ			
46							
47							
48							
49							
50							

			Results: Significance to Background **					
		Distribution Tests		Non-normal Test	Normal Tests			
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test (lognormal)			
MW1	Background Well	Not normal	Not normal	N/A				
MW2	Compliance Well #1	Not normal	Not normal	Significant	Significant	Significant		
MW3	Compliance Well #2	Not normal	Not normal	Not Significant	Significant	Significant		
MW4	Compliance Well #3	Normal	Normal	Not Significant	Significant	Significant		
CB	Compliance Well #4	Normal Not normal		Not Significant	Significant	Significant		
	Compliance Well #5			·				

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation		
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity	
MW1	Background Well	-0.000482325	-0.372094358	Slight Decrease	Moderately Weak	
MW2	Compliance Well #1	0.00800395	0.600737855	Slight Increase	Moderately Strong	
MW3	Compliance Well #2	-0.007460344	-0.124277862	Slight Decrease	Very Weak	
MW4	Compliance Well #3	0.013381962	0.858642423	Slight Increase	Very Strong	
CB	Compliance Well #4	0.012633522	0.475486094	Slight Increase	Moderately Weak	
•	Compliance Well #5					

Results: Groundwater Standards/Criteria Comparison

		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of	% Violations of	No. Violations of	% Violations of	Points
		GW Standard	GW Standard	GW Criteria	GW Criteria	Folitio
MW1	Background Well	0	0%	0	0%	29
MW2	Compliance Well #1	0	0%	19	100%	19
MW3	Compliance Well #2	1	3.4%	28	96.6%	29
MW4	Compliance Well #3	0	0%	29	100%	29
CB	Compliance Well #4	0	0%	18 72%		25
	C					

		Maximum Value	Minimum Value	Average	
MW1	Background Well	7.060	2.260	3.818	
MW2	Compliance Well #1	67.500	40.000	47.758	
MW3	Compliance Well #2	329.000	1.000	79.072	
MW4	Compliance Well #3	89.400	35.800	64.738	
CB	Compliance Well #4	78.700	1.000	35.126	
	Compliance Well #5				

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	Specific Conductance
Applicable GW Standard (if none leave	
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	umhos/cm

Sample or Report Date (ascending) Date (ascend					Data	Entry		
Date (ascending) Well Data Well #1 Well #2 Well #3 Well #4 Well #5		Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
1 1/28/2008 74 464 1412 598 5960 2 4/25/2008 43 455 1294 614 400 3 8/11/2008 40 448 0.2 604 384 4 1/15/2009 351 490 1322 578 479 5 4/9/2009 175 440 1181 611 216 7 10/16/2009 335 442 1198 601 210 8 1/14/2010 39 429 1036 545 329 9 7/14/2010 46 416 1118 502 382 10 8/16/2010 25 726 450 280 11 10/28/2010 14 756 361 238 12 3/15/2011 30 703 340 242 13 3/6/2/2011 25 674 330 242 14 9/19/2011 25 674 330 212 15 12/13/2011 42 705 322 316 16 2/22/2012 35 1583 8 179 17 9/12/2012 39 1443 643 18 12/6/2012 32 1450 723 19 2/19/2013 40 1340 622 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	ſ							Compliance
2 4/25/2008 43 458 1294 614 400 3 8/11/2008 40 448 0.2 604 384 4 1/15/2009 351 490 1322 578 479 5 4/9/2009 184 440 1173 575 291 6 9/2/2009 335 442 1198 601 210 8 1/14/2010 39 429 1036 545 329 9 7/14/2010 46 416 1118 502 382 10 8/16/2010 25 726 450 280 11 10/28/2010 14 756 361 238 11 10/28/2010 14 756 361 238 12 3/15/2011 30 703 340 242 13 6/21/2011 16 692 324 259 14 9/19/2011 42 705 322 316 16 2/22/2012 35 1583 8 17/9 9/12/2012 39 1443 643 18 12/6/2012 32 14550 723 19 2/19/2013 40 1340 622 22 23 34 39 39 39 39 39 39 39 39 40 40 44 44 44 44 45 5 44 49 49 49	4							vveii #3
Section Sect								
4								
5								
6 9/2/2009 175 440 1181 611 216 7 10/16/2009 335 442 1198 601 210 8 1/14/2010 39 429 1036 545 329 9 7/14/2010 46 416 1118 502 382 10 8/16/2010 14 756 361 238 11 10/28/2010 14 756 361 238 12 3/15/2011 30 703 340 242 13 16/2/2011 16 692 324 259 14 9/19/2011 25 674 350 212 15 12/13/2011 42 705 322 316 16 2/22/2012 35 1583 8 17 9/12/2012 39 1443 643 18 12/6/2012 32 1450 723 19 2/19/2013 40 1340 622 20 21 22 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3								
8								
8	7	10/16/2009	335	442	1198	601	210	
10 8/16/2010 25 726 450 280 11 10/28/2010 14 756 361 238 12 3/15/2011 30 703 340 242 13 6/21/2011 16 692 324 259 14 9/19/2011 25 674 350 212 15 12/13/2011 42 705 322 316 16 2/22/2012 35 1583 8 179 322 316 17 9/12/2012 39 1443 643 18 12/6/2012 32 1450 723 19 2/19/2013 40 1340 622 20 21 22 22 23 24 259 21 22 23 25 26 26 27 28 28 29 30 30 31 32 33 33 34 34 35 35 36 37 37 38 39 40 40 41 41 42 42 43 39 39 40 40 44 44 44 45 5 44 44 44 45 5 44 44 44 45 5 44 44			39	429	1036	545	329	
11	9	7/14/2010	46	416	1118	502	382	
12 3/15/2011 30 703 340 242 13 6/21/2011 16 692 324 259 14 9/19/2011 25 674 350 212 15 12/13/2011 42 705 322 316 16 2/22/2012 35 1583 8 17 9/12/2012 39 1443 643 18 12/6/2012 32 1450 723 19 2/19/2013 40 1340 622 20 21 21 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10	8/16/2010	25		726	450	280	
13 6/21/2011 16 692 324 259 14 9/19/2011 25 674 350 212 15 12/13/2011 42 705 322 316 16 2/22/2012 35 1583 8 17 9/12/2012 39 1443 643 18 12/6/2012 32 1450 723 19 2/19/2013 40 1340 622 20 21 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
14 9/19/2011 25 674 350 212 15 12/13/2011 42 705 322 316 16 2/22/2012 35 1583 8 17 9/12/2012 39 1443 643 18 12/6/2012 32 1450 723 19 2/19/2013 40 1340 622 20 21 21 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
15	13	6/21/2011			692		259	
16								
17 9/12/2012 39 1443 643 18 12/6/2012 32 1450 723 19 2/19/2013 40 1340 622 20 21 22 23	L						316	
18								
19								
20								
21	- 1	2/19/2013	40		1340	622		
22 23								
23	- 1							
24								
25								
26								
27 28 30 30 31 31 32 33 34 35 36 37 38 39 40 40 41 41 42 42 43 44 45 45 46 47 48 48								
28								
29	- 1							
30 31 32 33 34 34 35 36 37 38 39 39 39 39 30 30 30 30								
31								
32 33 34 35 36 37 38 39 40 41 42 42 43 44 44 45 46 47 48 49								
33 34 34 35 35 36 37 37 38 38 39 39 39 30 41 41 42 42 43 43 44 44 45 45 46 47 47 48 49								
34								
35								
36								
37								
39								
40	38							
41	39							
42 43 44 45 46 47 48 49	40							
43	41							
44 45 46 47 48 49	42							
45 46 47 48 49	43							
46 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49								
47 48 49	45							
48 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	46							
49	47							
50								
	50							

		Results: Significance to Background **					
		Distribution Tests		Non-normal Test	Normal Tests		
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test (lognormal)		
MW1	Background Well	Not normal	Not normal		N/A		
MW2	Compliance Well #1	Not normal	Not normal	Significant	Significant	Significant	
MW3	Compliance Well #2	Normal	Not normal	Significant	Significant	Significant	
MW4	Compliance Well #3	Not normal	Not normal	Significant	Significant	Significant	
CB	Compliance Well #4	Not normal Not normal		Significant	Not Significant	Significant	
	Compliance Well #5			·			

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation		
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity	
MW1	Background Well	-0.076126278	-0.425332799	Slight Decrease	Moderately Weak	
MW2	Compliance Well #1	-0.050142004	-0.705659451	Slight Decrease	Moderately Strong	
MW3	Compliance Well #2	0.100568501	0.146165902	Slight Increase	Very Weak	
MW4	Compliance Well #3	-0.089946388	-0.301307205	Slight Decrease	Moderately Weak	
CB	Compliance Well #4	-1.51468788	-0.470706582	Strong Decrease	Moderately Weak	
	Compliance Well #5					

Results: Groundwater Standards/Criteria Comparison

		Groundwater Standard		Groundwa	ter Criteria	Total No. of Data
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW1	Background Well					19
MW2	Compliance Well #1					9
MW3	Compliance Well #2					19
MW4	Compliance Well #3					19
CB	Compliance Well #4					15
	Compliance Well #5					

		Maximum Value	Minimum Value	Average	
MW1	Background Well	351.000	14.000	83.421	
MW2	Compliance Well #1	490.000	416.000	447.444	
MW3	Compliance Well #2	1583.000	0.200	1042.432	
MW4	Compliance Well #3	723.000	8.000	493.211	
CB	Compliance Well #4	5960.000	210.000	679.867	
	Compliance Well #5				

Facility Name:	Tyson Foods - Glen Allen
Permit No.:	VA0004031
Monitoring Parameter:	pH
Applicable GW Criteria (Lower):	5.5
Applicable GW Criteria (Higher):	8.5
Concentration Units (all data):	S.U.

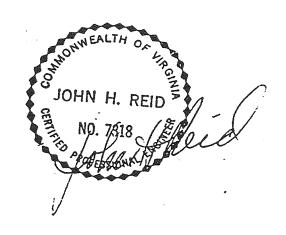
				Data	Entry		
	Well Designation ▶	MW1	MW2	MW3	MW4	СВ	
	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5
1	1/28/2008	4.96	5.77	6.24	5.67	5.77	vveii #5
2	4/25/2008	5.01	5.66	6.36	5.61	5.46	
3	8/11/2008	6.64	6.9	0.30	6.78	6.72	
4	1/15/2009	6.08	5.92	6.19	5.96	7.05	
5	4/9/2009	6.34	6.49	6.68	6.8	6.96	
6	9/2/2009	7.14	7.32	7.12	6.8	7.21	
7	10/16/2009	5.6	6.33	5.81	6.03	6.78	
8	1/14/2010	9.21	6.26	8.37	7.3	7.82	
9	7/14/2010	6.23	6.34	6.93	6.26	6.72	
10	8/16/2010	5.6		6.58	5.95	7.24	
11	10/28/2010	5.38		6.56	6.17	7.32	
12	3/15/2011	5.78		6.59	6.21	5.88	
13	6/21/2011	5.74		6.65	6.01	6.22	
14	9/19/2011	5.63		6.41	5.91	6.35	
15	12/13/2011	5.75		6.58	6.01	6.39	
16	2/22/2012	6.02		6.43	6.6		
17	9/12/2012	4.93		6.61	5.98		
18	12/6/2012	5.06		6.02	7.76		
19	2/19/2013	5.58		5.95	6.69		
20							
21							
22							
23							
24 25							
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43			ļ		ļ		
44							
45							
46							
47			l	-	l		
48			 	 	 		
49 50			 	 	 		
JU		I	L	l	L		L

		Results: Significance to Background **					
		Distributi	Distribution Tests		Normal Tests		
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test (lognorma		
MW1	Background Well	Not normal	Not normal		N/A		
MW2	Compliance Well #1	Normal	Normal	Not Significant	Not Significant	Not Significant	
MW3	Compliance Well #2	Not normal	Not normal	Significant	Significant	Significant	
MW4	Compliance Well #3	Not normal	Not normal	Significant	Not Significant	Significant	
CB	Compliance Well #4	Not normal	Not normal Not normal		Significant	Significant	
	Compliance Well #5						

^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and

		Regression Line	Pearson	Interpretation		
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity	
MW1	Background Well	-0.000381942	-0.223091449	Slight Decrease	Very Weak	
MW2	Compliance Well #1	0.00069582	0.393871696	Slight Increase	Moderately Weak	
MW3	Compliance Well #2	-0.000151421	-0.152225712	Slight Decrease	Very Weak	
MW4	Compliance Well #3	0.000262375	0.267543325	Slight Increase	Moderately Weak	
CB	Compliance Well #4	0.000150565	0.105555715	Slight Increase	Very Weak	
	Compliance Well #5			·		


Results: Groundwater Standards/Criteria Comparison

		Groundwater Standard		Groundwater Criteria		Total No. of Data
		No. Violations of	% Violations of	No. Violations of	% Violations of	Points
		GW Standard	GW Standard	GW Criteria	GW Criteria	Folitis
MW1	Background Well	14	73.7%	1	5.3%	19
MW2	Compliance Well #1	9	100%	0	0%	9
MW3	Compliance Well #2	18	100%	0	0%	18
MW4	Compliance Well #3	19	100%	0	0%	19
CB	Compliance Well #4	14	93.3%	0	0%	15
	C					

		Maximum Value	Minimum Value	Average	
MW1	Background Well	9.210	4.930	5.931	
MW2	Compliance Well #1	7.320	5.660	6.332	
MW3	Compliance Well #2	8.370	5.810	6.560	
MW4	Compliance Well #3	7.760	5.610	6.342	
CB	Compliance Well #4	7.820	5.460	6.659	
	Compliance Well #5				

LAGOON CLOSURE PLAN

FOR THE
TYSON FOODS, INC.
POULTRY PROCESSING PLANT
AT
GLEN ALLEN, VIRGINIA

APRIL 9, 1992

SUBMITTED BY REID ENGINEERING COMPANY, INC.

1211 CAROLINE STREET FREDERICKSBURG, VIRGINIA 22401 (703) 371-8500, FAX. (703) 371-8576

LAGOON CLOSURE PLAN

FOR

TYSON FOODS, INC. POULTRY PROCESSING PLANT

Glen Allen, VA

I. <u>INTRODUCTION</u>

This report presents a proposed closure plan for three (3) wastewater treatment lagoons at the Tyson Foods, Inc. Poultry Processing Plant in Glen Allen, VA. The closure plan and subsequent closure of the lagoons have been mandated by the Virginia Water Control Board. This report includes:

- * site description,
- * description of the proposed lagoon closure procedure,
- * post-closure maintenance plan,
- * proposed lagoon closure schedule.

II. DESCRIPTION OF SITE & EXISTING LAGOONS

The Tyson Foods, Inc. Poultry Processing Plant is located approximately 18 miles north west of Richmond, VA on Highway The plant was purchased by Holly Farms in 1963 for the processing of poultry products. The three (3) wastewater treatment lagoons to be closed were constructed in 1968 east of the plant facility to treat wastewater generated in the processing operation. The lagoons include one anaerobic lagoon (Lagoon No. 1) and two (2) unaerated lagoons for storage of waste activated sludge (Lagoon No. 3 and No. 4). The site is shown in Appendix I - Topographic Map of Lagoon Closure Area. The three (3) lagoons were constructed using on-site soils on the bottom and side slopes. At the time of construction, these soils were not tested for compaction or permeability. The effectiveness of these soils in preventing leakage is, therefore, questionable. Groundwater monitoring data gathered by Tyson Foods, Inc. in 1990 and 1991, indicates concentrations of certain pollutants to be elevated above background groundwater quality levels. Use of these lagoons will be discontinued after proposed improvements to the wastewater treatment system are completed in late 1992. system of groundwater collection wells and well pumps will also be installed in 1992 to achieve groundwater remediation to background levels.

Sludge thickness measurements and sampling have also been performed in each lagoon. As shown in Appendix II, Lagoon

Sludge Accumulation Measurements, approximately 16.0 feet (259,000 ft³) of accumulated sludge presently exists in sludge storage Lagoon No. 3 which is filled with solids. Approximately 1.5 feet of sludge (12,100 ft³) exists on the bottom sludge storage Lagoon No. 4 which has a total depth of 12.5 feet. Approximately 16.0 feet of accumulated bottom sludge and floating solids (300,000 ft³) are present in existing Anaerobic Lagoon #1 which is filled with solids.

Testing of a representative composite sample of the sludge in each lagoon was performed and the results are enclosed in Appendix IV, Report of Laboratory Analysis of Accumulated Sludge Solids.

III. DESCRIPTION OF PROPOSED LAGOON CLOSURE PROCEDURE

The closure of the three lagoons at the Tyson Foods, Glen Allen, VA treatment plant site will be accomplished with sludge materials in place in the following steps:

- 1. After the proposed treatment system upgrade is completed and on-line, discontinue input of wastewater into the existing anaerobic lagoon and input of sludge into the two existing sludge lagoons.
- 2. The two existing 12" diameter inlet pipes into existing Anaerobic Lagoon #1 will be abandoned and plugged with concrete. The existing 4" diameter pipe inlets into Lagoons #3 and #4 will be abandoned and plugged with concrete. The existing 6" diameter overflow pipe from Lagoons #3 into Lagoon #5 will be abandoned and plugged with concrete. The 4" diameter sludge waste force main to Lagoons #3 and #4 will be plugged downstream of the tee connection and inlet control valve to the proposed new waste sludge lagoon and the old force main pipe to Lagoons #3 and #4 will be abandoned.
- 3. Gradually pump out liquid wastewater from all three lagoons into the treatment system for ultimate disposal; and, continue to pump out collected rainwater from the lagoons into the treatment system for ultimate disposal as necessary in the future.
- 4. Optionally pump out accumulated solids from each of the lagoons by a commercial sludge disposal company for ultimate disposal by land application on VA SWCB approved sites.
- 5. Regularly seed accumulated solids in the lagoons with commercially purchased Byo-Gon biological life activator (See Appendix V Byo-Gon Activator Information) to attempt to accelerate the reduction of accumulated sludge solids volume by endogenous respiration.

- 6. Continue to monitor the quality of groundwater collected in the recovery wells, by analyzing on a quarterly frequency, samples pumped from the groundwater remediation recovery well system until groundwater pollutant levels are either reduced to background levels or to relatively stable levels which do not cause groundwater quality to be at risk.
- 7. Continue to monitor the levels of accumulated sludge in each lagoon to observe sludge volume reduction from endogenous respiration accomplished by dosage of Byo-Gon activator.

IV. POST CLOSURE MAINTENANCE PLAN

This proposed "materials in place" lagoon closure plan is not a "clean close" grade over plan but is essentially a long term lagoon management plan. This lagoon closure or management plan is especially suitable when accomplished simultaneously with the proposed Groundwater Remediation Plan in which groundwater will be collected, tested and recycled to the Tyson Foods, Glen Allen treatment plant for ultimate disposal.

This lagoon closure plan is proposed based on the assumption that discontinuing operation of these lagoons combined with lagoon solids volume reduction and lagoon supernatant disposal will eliminate further potential seepage of pollutants into the groundwater. This closure goal will be confirmed by ongoing groundwater sampling and testing during the Groundwater Remediation Phase coupled with the backup protection of the groundwater collection, pumping, treatment, and disposal plan.

V. PROPOSED LAGOON CLOSURE SCHEDULE

·	EVENT	DATE
1.	Complete construction and start-up of Groundwater Remediation Well System and begin initial groundwater collection phase prior to elimination of Operation of unlined treatment lagoons.	Aug. 15, 1992
2.	Complete construction of treatment	
	plant upgrade and eliminate operation of unlined treatment lagoons.	March 15, 1993
3.	Commence liquid waste pump-out from the lagoons into the upgraded wastewater treatment system.	June 15, 1993
4.	Complete optional pump-out of accumu- lated solids from lagoon by commercial sludge disposal company.	Sept. 15, 1993
5.	Commence Byo-Gon activator dosage to reduce residual sludge volumes in lagoons.	April 1, 1994
6.	Discontinue Byo-Gon activator dosage into the lagoons.	April 1, 1995
7.	Monitor residual sludge characterisctics and accumulated sludge depths on each lagoon and pump out rainwater from lagoons to treatment system.	Commence on April 1, 1994 continue into future as required by VA SWCB

Topographic Map of Lagoon Closure Area	
I among Cl. 1	4
Lagoon Sludge Accumulation Measurements	· 4
	•
Cross Sections of Existing Lagoons	
••••••••••••••••••••••••••••••••••••••	
Report of Laboratory Analysis	A
or baboratory analysis	

Groundwater Remediation Plan Letter of Approval with Conditions dated January 9, 1992

COMMONWEALTH of VIRGINIA

STATE WATER CONTROL BOARD

Richard N. Burton Executive Director

4900 Cox Road

Gerard Seeley, Jr. Regional Director

Please reply to: Piedmont Regional Office

P. O. Box 11143 Richmond, Virginia 23230 (804) 527-5020

January 9, 1992

Mr. John H. Reid President Reid Engineering Company, Inc. 1211 Caroline Street Fredericksburg, Virginia 22401

RE: Tyson Foods, Inc., Glen Allen, Virginia Ground Water Remediation Plan

Dear Mr. Reid:

The staff of the State Water Control Board has reviewed the supplement dated October 21. 1991 to the ground water remediation plan for Tyson Foods, Glen Allen. The proposed abatement procedures are technically adequate and the plan is approved subject to the following conditions:

- 1. Please confirm the pumping schedule for the recovery wells. The January 14, 1991 plan indicated that pumping was to be continuous at a rate of approximately 24 gallons per minute (2 the recovery wells are to be pumped 24 hours per day, 7 days per week.
- 2. All monitoring reports are to be submitted by the tenth of the month following the monitoring period.
- An annual status report is required in January 1993 and yearly thereafter, if necessary. A completion report is also required.
- 4. Regarding Appendix 3 -- Ground Water Remediation Plan Implementation Schedule, the monitoring following abatement must be done at least monthly for a period of 6 months. The perpetual monitoring, if needed, must be done on a quarterly hasis.
- 5. The ground water monitoring program approved in March 1990 requires quarterly monitoring for a more comprehensive list of constituents than the indicator parameters cited in the October 21 submittal. The quarterly monitoring required by the March 1990 approval must continue. That monitoring will

Page 2 Mr. John H. Reid Tyson Foods, Inc., Glen Allen January 9, 1992

also satisfy the needs of the abatement plan when the sample times coincide.

- A Lagoon Closure Plan will be submitted for review and approval by February 14, 1992.
- 7. We reserve the right to require additional site assessment and site characterization if the need for such work is identified during the abatement program.

Please contact Ray Jenkins (527-5037) or B. N. Sinha (527-5054) if you have any questions.

Sincerely.

Gerard Seelev. Jr.

Regional Director

/rrj

cc: Mr. Larry C. Moyer -- Tyson Foods, Inc.

Reid Engineering Company, Inc.

703-371-8500 703-786-2733 FAX 703-371-8576

Consulting Environmental Engineers Industrial Wastewater Treatment Specialists

1211 CAROLINE STREET, FREDERICKSBURG, VIRGINIA 22401

October 21, 1991

Mr. Ray Jenkins, Jr.
Environmental Engineer Senior
Piedmont Regional Office
State Water Control Board
Commonwealth of Virginia
4900 Cox Road
Innsbrook Corporate Center
P. O. Box 11143
Richmond, Virginia 23230

SUBJECT:

TYSON FOODS, INC., GLEN ALLEN, VIRGINIA

GROUNDWATER REMEDIATION PLAN

Dear Ray:

As you requested in our meeting on September 25, 1991 concerning the proposed Tyson Foods, Glen Allen, Virginia groundwater remediation plan, this letter and attached groundwater contour map, aquifer analysis, and implementation schedule are submitted to the State Water Control Board to provide the additional information that you requested during our meeting.

As requested by Dr. Sinha, a groundwater contour map has been prepared and is attached in Appendix #1. This groundwater contour map clearly indicates a south to southeasterly flow of groundwater under the existing lagoons. This groundwater contour map also indicates that, at present, the unnamed tributary stream at the south end of the Glen Allen processing plant site is the present final discharge point for groundwater flow under the existing lagoons. The proposed groundwater remediation plan will call for the installation of twelve groundwater recovery wells across the south end of the new treatment plant site. Proper operation of this groundwater recovery-remediation system will result in elimination of contaminated groundwater flow into the unnamed tributary stream.

Mr. Ray Jenkins, Jr. Virginia State Water Control Board October 21, 1991 Page 2

As emphasized by Mr. Bill Barker, hydrogeologist for Tyson Foods on this project, because the hydraulic gradient of the shallow groundwater slopes and flows toward the surface water in the unnamed tributary from both the North and South sides of the tributary, the present extent of groundwater contamination should be limited to the groundwater on the North side of the unnamed tributary stream and the stream flow itself. Also, because of the original topography of the site prior to construction of the treatment ponds, contaminant migration is unlikely East and West of the pond sites. Before construction of the ponds a large drainage swale existed directing runoff toward the unnamed tributary. This stream should be eliminated by the proposed groundwater remediation plan.

As requested by Dr. Sinha, the groundwater remediation plan will be revised to use only existing upgradient Monitoring Well #1 as an indicator well for background groundwater quality.

As requested by Dr. Sinha, aquifer analysis including determinations of hydraulic gradient, hydraulic conductivity, transitivity and storativity are provided in Appendix #2. These analyses have been prepared by Mr. Bill Barker, P.G., Consulting Hydrogeologist for Tyson Foods, Inc. As noted in the discussion in Appendix #2 prepared by Mr. Barker, this hydrogeologic information indicates that the proposed recovery well system should be able to collect 100% of the groundwater flow from under the treatment plant lagoon site to the unnamed tributary located at the South boundary of the Tyson Foods processing site.

As requested, Reid Engineering Company has prepared a proposed Groundwater Remediation Plan Implementation Schedule which is contained in Appendix #3. Please be advised that this implementation schedule has used available hydrogeologic data for the Glen Allen site to prepare a rough estimate that approximately 15 months will be required from the time that wastewater inflow into the existing unlined treatment lagoons is eliminated to the point in time where the proposed groundwater collection and treatment program has resulted in the elimination of the entrance of further pollutants into the groundwater flow and the production of groundwater quality equal to the background quality of upgradient Monitoring Well #1. The proposed groundwater remediation plan contains the following four phases:

Mr. Ray Jenkins, Jr. Virginia State Water Control Board October 21, 1991 Page 3

- Initial groundwater collection and pumping phase prior to elimination of operation of existing unlined waste treatment lagoons.
- Groundwater remediation phase after new treatment system improvements are operational and further operation of existing unlined waste treatment lagoons is eliminated.
- 3. Post remediation phase with reduced groundwater monitoring schedule.
- 4. Perpetual monitoring phase with periodic groundwater monitoring.

As agreed in our meeting, the following parameters will be tested as indicator pollutants in the groundwater samples taken from MW #1, 2, 3 & 4 during all phases of the remediation plan:

Ammonia TKN TDS Specific Conductivity pH Zinc

One composite sample of the combined pumped groundwater flow will also be obtained from the proposed new groundwater collection manhole for testing.

Reid Engineering Company will be submitting a Lagoon Closure Plan for the Glen Allen site to the State Water Control Board by mid December. As you noted in our meeting, the requirement for a Perpetual Monitoring Phase at the end of the remediation work will depend upon the closure method proposed by Tyson Foods, Inc. in the Lagoon Closure Plan.

As noted by Mike Motsinger, assistant processing plant manager at Glen Allen, Tyson Foods desires to obtain expedited approval of the proposed groundwater remediation plan from the Virginia State Water Control Board so that they can proceed with the installation and operation of the groundwater remediation recovery wells to improve groundwater quality as rapidly as possible. Tyson Foods desires to eliminate the seepage of contaminants from the existing

Mr. Ray Jenkins, Jr. Virginia State Water Control Board October 21, 1991 Page 4

unlined lagoons; contain existing groundwater flow; and eliminate any negative effects of groundwater flow on receiving stream water quality by implementation and start-up of this groundwater collection, pumping and remediation plan by January 1, 1992 as noted on the proposed implementation schedule.

If you have questions or need additional information please

Best Regards,

REID ENGINEERING COMPANY, INC.

John H. Reid, P.E. President

cc: Mike Motsinger Larry Moyer Danny Wyatt Gene Newman CTF28C08/JHR/ca

Attachment H: Whole Effluent Toxicity Evaluation

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4949-A Cox Road, Glen Allen, VA 23060-6296804/527-5020

SUBJECT: VA0004031 Tyson Farms, Inc. – Updated Toxicity Evaluation

TO: File

FROM: Janine Howard

DATE: January 15, 2015, updated March 16, 2015, updated August 10, 2015

Background: On October 1, 2014 DEQ staff met with Tyson representatives to discuss the draft permit package that was distributed to Tyson for owner review on August 25, 2014. Tyson expressed concern that the TMP Data Evaluation dated December 1, 2010, from which the new chronic toxicity limit was derived, was out of date and utilized data that was no longer representative of the facility's effluent quality. DEQ agreed to rerun the statistical analysis on the toxicity data using more recent data. All data that was available from 2009 to present was compiled and utilized for the updated evaluation.

Data Summary:

Table 1. Results of Chronic Toxicity Tests using Ceriodaphnia dubia

TEST DATE	l	NOEC		T.U. _c	48 HR		SURVIVAL	TEST
(start date)	Survival	Reproduction	Survival	Reproduction	- LC ₅₀	IC ₂₅	IN 100% EFFLUENT	LAB
3-Feb-2009	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
21-Apr-2009	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
23-Jul-2009	100%	83%	1.00	1.20	>100%	>100%	100%	CBI
22-Oct-2009	100%	69%	1.00	1.45	>100%	72.20	70%	CBI
15-Jan-2013	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
23-Apr-2013	100%	83%	1.00	1.20	>100%	58.7	100%	CBI
27-Aug 2013	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
22-Oct 2013	100%	100%	1.00	1.00	>100%	>100%	90%	CBI
01-Feb-2015	100%	100%	1.00	1.00	>100%	>100%	100%	REIC
12-Apr-2015	100%	100%	1.00	1.00	>100%	85.38	100	REIC

Note: NR = Not Reported; CBI = Coastal Bioanalysts, Inc.; REIC = Research Environmental & Industrial Consultants, Inc.

Table 2. Results of Chronic Toxicity Tests using Pimephales promelas

TEST DATE	NO	EC	T.U	J. _C	48 HR -		SURVIVAL	TEST
(start date)	Survival	Growth	Survival	Growth	LC ₅₀	IC ₂₅	IN 100% EFFLUENT	LAB
23-Feb-2010	100%	100%	1.00	1.00	>100%	>100%	98%	CBI
4-May-2010	100%	100%	1.00	1.00	>100%	>100%	95%	CBI
17-Aug-2010	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
19-Oct-2010	100%	100%	1.00	1.00	>100%	>100%	95%	CBI
12-Mar-2012	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
12-Jun-2012	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
16-Jul-2012	100%	100%	1.00	1.00	>100%	>100%	98%	CBI
23-Oct-2012	100%	100%	1.00	1.00	>100%	>100%	95%	CBI
4-Mar-2014	100%	83%	1.00	1.20	>100%	99.4%	100%	CBI
1-May 2014	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
16-Sept-2014	100%	100%	1.0	1.0	>100%	>100%	95%	REIC
26-Oct-2014	100%	100%	1.0	1.0	>100%	>100%	92.5%	REIC

Note: MI = Meritech, Inc.; CBI = Coastal Bioanalysts, Inc.

<u>Discussion:</u> Statistical data evaluation was performed using STATS.exe. The test endpoints used in the data evaluation were the lowest NOEC's (converted to TU_C) reported for each of the paired chronic tests performed on a specific date. STATS.exe results are listed below.

```
2009 data through 2015
                                             2013 data only
Chemical = WET-TUc (C. dubia)
                                             Chemical = WET-TUc (C. dubia)
Chronic averaging period = 4
                                             Chronic averaging period = 4
WLAa = 3
                                             WLAa = 3
WLAc = 1
                                             WLAc = 1
Q.L.
       = 1
                                             Q.L.
                                                    = 1
# samples/mo. = 1
                                             # samples/mo. = 1
# samples/wk. = 1
                                             # samples/wk. = 1
Summary of Statistics:
                                             Summary of Statistics:
# observations = 10
                                             # observations = 4
Expected Value = 1.08542
                                             Expected Value = 1.05
Variance = .019845
                                             Variance
                                                         = .3969
                                                        = 0.6
C.V.
          = 0.129788
                                             C.V.
97th percentile daily values = 1.37263
                                             97th percentile daily values = 2.55508
97th percentile 4 day average = 1.22361
                                             97th percentile 4 day average = 1.74697
97th percentile 30 day average= 1.13380
                                             97th percentile 30 day average= 1.26635
# < Q.L.
                                             # < Q.L.
Model used = BPJ Assumptions, type 2 data
                                             Model used = BPJ Assumptions, type 2 data
A limit is needed based on Chronic Toxicity
                                             A limit is needed based on Chronic Toxicity
Maximum Daily Limit = 1.12178812440083
                                             Maximum Daily Limit = 1.46257478405323
Average Weekly Limit = 1.12178812440083
                                             Average Weekly Limit = 1.46257478405323
Average Monthly Limit = 1.12178812440083
                                             Average Monthly Limit = 1.46257478405323
The data are:
                                             The data are:
       1
       1
                                             1.2
1.2
       1
                                             1
```

```
1.45
       1
1
1.2
2010 through 2014 data
                                              2012 through 2014
Chemical = WET- TUc (P. promelas)
                                              Chemical = WET- TUc (P. promelas)
Chronic averaging period = 4
                                              Chronic averaging period = 4
                                              WLAa = 3
WLAa = 3
WLAc = 1
                                              WLAc = 1
                                              Q.L.
Q.L.
       = 1
                                                     = 1
# samples/mo. = 1
                                              # samples/mo. = 1
# samples/wk. = 1
                                              # samples/wk. = 1
Summary of Statistics:
                                              Summary of Statistics:
# observations = 12
                                              # observations = 4
Expected Value = 1.01671
                                              Expected Value = 1.05
Variance
          = .002867
                                              Variance
                                                          = .3969
          = 5.266816
                                                        = 0.6
C.V.
                                              C.V.
97th percentile daily values = 1.12096
                                              97th percentile daily values = 2.55508
                                              97th percentile 4 day average = 1.74697
97th percentile 4 day average = 1.06796
97th percentile 30 day average= 1.03510
                                              97th percentile 30 day average= 1.26635
                                              # < Q.L.
# < Q.L.
           = 0
                                                         = 0
Model used = BPJ Assumptions, type 2 data
                                              Model used = BPJ Assumptions, type 2 data
A limit is needed based on Chronic Toxicity
                                              A limit is needed based on Chronic Toxicity
Maximum Daily Limit = 1.04962816462156
                                              Maximum Daily Limit = 1.46257478405323
Average Weekly Limit = 1.04962816462156
                                              Average Weekly Limit = 1.46257478405323
Average Monthly Limit = 1.04962816462156
                                              Average Monthly Limit = 1.46257478405323
The data are:
                                              The data are:
1
           1
                                              1
                                              1
1
           1
                                              1.2
1
1
1
1.2
```

As was the case during the 2010 evaluation, statistical evaluation of both species test end points resulted in limitation recommendations based on chronic toxicity. All of the NOEC test results for *P. promelas* were greater than the compliance endpoint in the previous permit, and thus reasonable potential for the toxicity of the discharge to this vertebrate species has not been demonstrated. In accordance with DEQ's earlier determination (see 12/1/2010 TMP memo), a limitation will not be based on these test results.

Due to the historic results where the NOEC fell below the compliance endpoint in the 2005 permit on multiple occasions, and a lack of newer data to demonstrate that the effluent toxicity has improved, a *C. dubia* limitation is again recommended for the permit reissuance. This is consistent with the earlier decision made in 2010 to include a chronic toxicity limit for *C. dubia* in the reissuance (see 12/1/10 memo).

A limitation recommendation of $TU_C = 1.12$ will be required in this permit reissuance.

Recommendation: In accordance with TMP Guidance 2000 (DEQ Guidance Memo No. 00-2012), data evaluation, and best professional judgment, it was determined that: 1) the facility continue conducting quarterly chronic toxicity tests (Chronic 3-Brood Static Renewal Survival and Reproduction Test using C. dubia until the WET limit is effective, and 2) a new WET limitation of NOEC = 89% and $TU_C = 1.12$ be established for C. dubia with a 4 year compliance schedule.

Refer to the 12/1/2010 TMP memorandum for the proposed permit language.

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4949-A Cox Road, Glen Allen, Virginia 23060

804/527-5020

TO: Deborah DeBiasi, State Coordinator Whole Effluent Toxicity Program, OWPCA

FROM: Tamira Cohen, PRO Environmental Engineer, Sr.

DATE: December 1, 2010

SUBJECT: TMP Data Evaluation and Review for Tyson Foods/Tyson Farms, VA0004031

COPIES: File

Permit Number:

Facility Name: Tyson Farms, Inc. DBA Tyson Foods, Inc. – Glen Allen

Complex VA0004031 2.067 MGD

Maximum 30-day Effluent Flow: 2.067 MGD Design Flow: 1.25 MGD

Receiving Stream: UT to Chickahominy River Instream Waste Concentration (IWC): 100%

Facility SIC: 2015

Facility Description:

The Tyson Foods – Glen Allen Complex is processed as an industrial minor facility. The industrial discharge consists of treated wastewater resulting from the operations at a poultry processing facility (slaughter, meat cut preparations, packaging for human consumption and poultry processing for pet food), facility cleaning operations, and facility domestic sanitary waste.

Facility Requirements:

The current permit (expired November 13, 2010) requires quarterly Whole Effluent Toxicity (WET) testing (Chronic 3-Brood Static Renewal Survival and Reproduction Test, *Ceriodaphnia dubia* in odd numbered years) and (Chronic 7-Day Static Renewal Survival and Growth Test, *Pimephales promelas* in even numbered years). The special condition set the criteria of NOEC = 69% or TU_C of 1.44.

Data Summary:

This data review includes the results of 11 and 10 sets of quarterly testing for each of *Ceriodaphnia dubia* and *Pimephales promelas*, respectively. Testing was performed by Meritech, Inc. (2005 to 2007) and then Coastal Bioanalysts, Inc. (2007 to 2010). All tests were conducted in accordance with approved protocol.

Results of Chronic Toxicity Tests using Ceriodaphnia dubia

TEST DATE		NOEC		T.U. _c	48 HR -		SURVIVAL	
(start date)	Survival	Reproduction	Survival	Reproduction	LC ₅₀	IC ₂₅	IN 100% EFFLUENT	TEST LAB
13-Dec-2005	100%	100%	1.00	1.00	>100%	>100%	NR	MI
16-Jan-2007	75%	23%	1.33	4.35	>100%	34.50	60%	MI
21-Mar-2006	100%	100%	1.00	1.00	>100%	>100%	NR	MI
20-Mar-2007	100%	45%	1.00	2.22	79.5	>100%	NR	MI
22-May-2007	100%	100%	1.00	1.00	>100%	>100%	90%	MI
10-Jul-2007	100%	100%	1.00	1.00	>100%	87.90	80%	СВІ
7-Nov-2007	100%	69%	1.00	1.44	>100%	72.80	100%	СВІ
3-Feb-2009	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
21-Apr-2009	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
23-Jul-2009	100%	83%	1.00	1.20	>100%	>100%	100%	CBI
22-Oct-2009	100%	69%	1.00	1.45	>100%	72.20	70%	CBI

Note: NR = Not Reported; MI = Meritech, Inc.; CBI = Coastal Bioanalysts, Inc.

Results of Chronic Toxicity Tests using Pimephales promelas

	011101110	1 Chicky	10010 40	<u>g , ,,,,</u>	priales pre	,,,,,		
TEST DATE (start date)	NO Survival	EC Growth	T.U Survival	J. _c Growth	48 HR - LC ₅₀	IC ₂₅	SURVIVAL IN 100% EFFLUENT	TEST LAB
16-May-2006	100%	100%	1.00	1.00	>100%	>100%	100%	MI
22-Aug-2006	100%	100%	1.00	1.00	>100%	>100%	100%	MI
23-Jan-2007	100%	100%	1.00	1.00	>100%	>100%	100%	MI
14-Oct-2008	83%	83%	1.20	1.20	>100%	>100%	85%	CBI
15-Jul-2008	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
24-Jun-2008	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
13-Mar-2008	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
17-Aug-2010	100%	100%	1.00	1.00	>100%	>100%	100%	CBI
4-May-2010	100%	100%	1.00	1.00	>100%	>100%	95%	CBI
23-Feb-2010	100%	100%	1.00	1.00	>100%	>100%	98%	СВІ

Note: MI = Meritech, Inc.; CBI = Coastal Bioanalysts, Inc.

Discussion:

Statistical data evaluation was performed using STATS.exe. The test endpoints used in the data evaluation were the lowest NOEC's (converted to TU_C) reported for each of the paired chronic tests performed on a specific date. These test endpoints were consistently the reproduction TU_C in C. dubia and growth TU_C in P. promelas. STATS.exe results are listed below.

Chronic averaging period = 4 WLAa = 3 WLAC = 1 Q.L. = 1 # samples/mo. = 1 # samples/wk. = 1 Summary of Statistics: # observations = 11 Expected Value = 1.48973 Variance = 0.540259 C.V. = 0.493393 Variance = 1.74215 # < Q.L. = 0 Model used el lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 The data (TU _C) are:	Chemical = WET - TU _C (<i>C. dubia</i>)	Chemical = WET - TU _C (<i>P. promelas</i>)
WLAa = 3 WLAc = 1 Q.L. = 1 # samples/mo. = 1 # samples/wk. = 1 Summary of Statistics: # observations = 11 Expected Value = 1.48973 Variance = 0.540259 C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 4 day average = 2.28474 97th percentile 30 day average = 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 1 2.22 1 1 1 1.44 1 1 1 1.44 1 1 1 1.2	- · · · · · · · · · · · · · · · · · · ·	
WLAc = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Q.L. = 1 Summary of Statistics: # observations = 11 Expected Value = 1.48973 Variance = 0.540259 C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 4 day average = 2.28474 97th percentile 30 day average = 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 4.35 1 2.22 1 1.2 1 1.44 1 1 1.2		
Q.L. = 1 # samples/mo. = 1 # samples/wk. = 1 Summary of Statistics: # observations = 11 Expected Value = 1.48973 Variance = 0.540259 C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 30 day average = 2.28474 97th percentile 30 day average = 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1	1	
# samples/mo. = 1 # samples/wk. = 1 Summary of Statistics: # observations = 11 Expected Value = 1.48973 Variance = 0.540259 C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 30 day average = 2.28474 97th percentile 30 day average = 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 4.35 1 2.22 1 1.44 1 1.44 1 1 1.22 1 1 1.2		
# samples/wk. = 1 Summary of Statistics: # observations = 11 Expected Value = 1.48973 Variance = 0.540259 C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 30 day average = 2.28474 97th percentile 30 day average = 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 4.35 1 2.22 1 1.44 1 1 1.44 1 1 1.22 1 1 1.2		
Summary of Statistics: # observations = 11 Expected Value = 1.48973 Variance = 0.540259 C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 4 day average = 2.28474 97th percentile 30 day average= 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 4.35 1 2.22 1 1 1 1 1.44 1 1 1.2.	·	
# observations = 11 Expected Value = 1.48973 Variance = 0.540259 C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 4 day average = 2.28474 97th percentile 30 day average = 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1	# samples/wk. = 1	# samples/wk. = 1
# observations = 11 Expected Value = 1.48973 Variance = 0.540259 C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 4 day average = 2.28474 97th percentile 30 day average = 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1	Summary of Statistics:	Summary of Statistics:
Variance = 0.540259 C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 4 day average = 2.28474 97th percentile 30 day average= 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 4.35 1 2.22 1 1.44 1 1.44 1 1.44 1 1.2.		
Variance = 0.540259 C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 4 day average = 2.28474 97th percentile 30 day average= 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 4.35 1 2.22 1 1.44 1 1.44 1 1.44 1 1.2.		
C.V. = 0.493393 97th percentile daily values = 3.21446 97th percentile 4 day average = 2.28474 97th percentile 30 day average = 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1	· ·	·
97th percentile daily values = 3.21446 97th percentile 4 day average = 2.28474 97th percentile 30 day average = 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 4.35 1 2.22 1 1.44 1 1.44 1 1.2. 97th percentile daily values = 1.13505 97th percentile 30 day average = 1.04030 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.05437147183784 Average Weekly Limit = 1.05437147183784 Average Weekly Limit = 1.05437147183784 The data (TU _C) are: The data (TU _C) are: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
97th percentile 4 day average = 2.28474 97th percentile 30 day average = 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1		
97th percentile 30 day average= 1.74215 # < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1		
# < Q.L. = 0 Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1		
Model used = lognormal Model used = lognormal A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.05437147183784 Average Weekly Limit = 1.05437147183784 Average Weekly Limit = 1.05437147183784 The data (TU _C) are: The data (TU _C) are: 1 4.35 1 1 2.22 1 1 1 1 1.44 1 2 2 2 2 3 4 2 4 2 4 <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>	· · · · · · · · · · · · · · · · · · ·	
A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 4.35 1 1 2.22 1 1.2 1 1 1.44 1 1 1.44 1 1 1.44 1 1 1.41 1 1.22		
Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 4.35 1 1 2.22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Woder used = lognormal	Woder used = logitormal
Maximum Daily Limit = 1.40692274293467 Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 4.35 1 1 2.22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A limit is needed based on Chronic Toxicity	A limit is needed based on Chronic Toxicity
Average Weekly limit = 1.40692274293467 Average Monthly Limit = 1.40692274293467 The data (TU _C) are: 1 1 2.22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Average Monthly Limit = 1.40692274293467 The data (TU _C) are: The data (TU _C) are: The data (TU _C) are: The data (TU _C) are: The data (TU _C) are: $ \begin{array}{cccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·
The data (TU _C) are: 1 4.35 1 2.22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1	Trocage menting Emite 111000227 1200 101	, worage monany mine in so ion in record i
4.35 1 1 1 2.22 1.2 1 1 1 1 1.44 1 1 1 1 1 1 1 1.2 1	The data (TU _C) are:	The data (TU _C) are:
1 1 2.22 1.2 1.2 1 1 1 1 1 1 1 1 1 1 1 1	1	1
2.22 1.2 1 1 1 1 1 1.44 1 1 1 1 1 1 1	4.35	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1
1 1.44 1 1 1 1 1.2	2.22	1.2
1.44 1 1 1 1 1 1 1.2 1	1	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.44	1
1.2	_	1
	1	1
	1.2	1

Statistical evaluation of both species test end points resulted in limitation recommendations based on chronic toxicity. Toxicity of the discharge to C. dubia has been demonstrated and a limitation recommendation of NOEC = 72% and TU_C = 1.38 will be required in this permit reissuance. All of the 10 NOEC test results for P. promelas were greater than the compliance endpoint in the previous permit, and thus reasonable potential for the toxicity of the discharge to this vertebrate species has not been demonstrated. One of the test results reported was less than the chronic NOEC of 100% (reported as 83%). Using best professional judgment, a limitation will not be based on these test results.

Recommendations:

In accordance with TMP Guidance 2000 (DEQ Guidance Memo No. 00-2012), data evaluation, and best professional judgment, it was determined that: 1) the facility continue conducting quarterly chronic toxicity tests (Chronic 3-Brood Static Renewal Survival and Reproduction Test using *C. dubia* until the WET limit

is effective 2) a new WET limitation of NOEC = 72% and $TU_C = 1.38$ be established for *C. dubia* with a 4 year compliance schedule.

(1) WET testing permit section to be included in current permit reissuance is as follows:

C. WHOLE EFFLUENT TOXICITY (WET) LIMITATION REQUIREMENTS

- 1. The Whole Effluent Toxicity limitation of ≤1.38 TU_C (NOEC≥72%) in Part I.A. is a final limit with an effective date of 4 years from the effective date of this permit.
- 2. Commencing within the first month after the effective date of the limit, the permittee shall conduct quarterly Chronic 3-Brood Static Renewal Survival and Reproduction Tests using *Ceriodaphnia dubia* using 24-hour flow-proportioned composite samples of final effluent from outfall 001.

These chronic tests shall be conducted in such a manner and at sufficient dilutions (minimum of five dilutions, derived geometrically) to determine the "No Observed Effect Concentration" (NOEC) for survival and reproduction. The test endpoint (72%) must be represented by a dilution, and if other than 100%, should be bracketed by at least one dilution above and one dilution below it. Results which cannot be determined (i.e., a "less than" NOEC value) are not acceptable, and a retest will have to be performed. A retest of a non-acceptable test must be performed during the same compliance period as the test it is replacing. Express the test NOEC as TU_c (Chronic Toxic Units), by dividing 100/NOEC for DMR reporting. The IC_{25} should be included on the submitted test reports. A copy of the toxicity test results shall be submitted with the DMR. Test procedures and reporting shall be in accordance with the WET testing methods cited in 40 CFR 136.3.

- 3. The permit may be modified or revoked and reissued to include pollutant specific limits in lieu of a WET limit should it be demonstrated that toxicity is due to specific parameters.
- 4. The permittee shall report the results on the quarterly DMR and submit a copy of each toxicity test report in accordance with the following schedule:

Test Period	Test Period Dates	DMR/Report Due Date
Quarter 1	Jan 1 – March 31, 2011	Apr 10, 2011
Quarter 2	Apr 1 – Jun 30, 2011	Jul 10, 2011
Quarter 3	Jul 1 – Sep 30, 2011	Oct 10, 2011
Quarter 4	Oct 1 – Dec 31, 2011	Jan 10, 2012
Quarter 5	Jan 1 – March 31, 2012	Apr 10, 2012
Quarter 6	Apr 1 – Jun 30, 2012	Jul 10, 2012
Quarter 7	Jul 1 – Sep 30, 2012	Oct 10, 2012
Quarter 8	Oct 1 – Dec 31, 2012	Jan 10, 2013
Quarter 9	Jan 1 – March 31, 2013	Apr 10, 2013
Quarter 10	Apr 1 – Jun 30, 2013	Jul 10, 2013
Quarter 11	Jul 1 – Sep 30, 2013	Oct 10, 2013
Quarter 12	Oct 1 – Dec 31, 2013	Jan 10, 2014
Quarter 13	Jan 1 – March 31, 2014	Apr 10, 2014
Quarter 14	Apr 1 – Jun 30, 2014	Jul 10, 2014
Quarter 15	Jul 1 – Sep 30, 2014	Oct 10, 2014
Quarter 16	Oct 1 – Dec 31, 2014	Jan 10, 2015
Quarter 17	Jan 1 – March 31, 2015	Apr 10, 2015
Quarter 18	Apr 1 – Jun 30, 2015	Jul 10, 2015
Quarter 19	Jul 1 – Sep 30, 2015	Oct 10, 2015
Quarter 20	Oct 1 – Dec 31, 2015	Jan 10, 2016

(2) WET testing permit section to be included in current permit reissuance is as follows:

D. WHOLE EFFLUENT TOXICITY (WET) MONITORING REQUIREMENTS

- Within the first quarter after the effective date of the permit, the permittee shall conduct quarterly chronic toxicity tests on Outfall 001 using 24-hour flow-proportioned composite samples until the WET limit of Part 1.A. is effective. The test to use is the Chronic 3-Brood Survival and Reproduction Static Renewal Test using *Ceriodaphnia dubia*.
- 2. These chronic tests shall be conducted in such a manner and at sufficient dilutions (minimum of five dilutions, derived geometrically) to determine the "No Observed Effect Concentration" (NOEC) for survival and reproduction. Results which cannot be quantified (i.e., a "less than" NOEC value) are not acceptable, and a retest will have to be performed. A retest of a non-acceptable test must be performed during the same compliance period as the .test it is replacing. Express the test NOEC as TU_c (Chronic Toxic Units), by dividing 100/NOEC for DMR reporting. Report the LC₅₀ at 48 hours and the IC₂₅ with the NOEC in the test report.

The permittee may provide additional samples to address data variability. These data shall be reported and may be included in the evaluation of effluent toxicity. Test procedures and reporting shall be in accordance with the WET testing methods cited in 40 CFR 136.3.

3. The test dilutions should be able to determine compliance with the following endpoints:

Chronic NOEC of ≥72% equivalent to a TU_C of ≤1.38

- 4. The permit may be modified or revoked and reissued to include pollutant specific limits in lieu of a WET limit should it be demonstrated that toxicity is due to specific parameters. The pollutant specific limits must control the toxicity of the effluent.
- 5. The permittee shall report the results on the quarterly DMR and submit a copy of each toxicity test report in accordance with the following schedule:

Test Period	Test Period Dates	DMR/Report Due Date
Quarter 1	Jan 1 – Mar 31, 2011	Apr 10, 2011
Quarter 2	Apr 1 – Jun 30, 2011	Jul 10, 2011
Quarter 3	Jul 1 – Sep 30, 2011	Oct 10, 2011
Quarter 4	Oct 1 – Dec 31, 2011	Jan 10, 2012
Quarter 5	Jan 1 – Mar 31, 2012	Apr 10, 2012
Quarter 6	Apr 1 – Jun 30, 2012	Jul 10, 2012
Quarter 7	Jul 1 – Sep 30, 2012	Oct 10, 2012
Quarter 8	Oct 1 – Dec 31, 2012	Jan 10, 2013
Quarter 9	Jan 1 – Mar 31, 2013	Apr 10, 2013
Quarter 10	Apr 1 – Jun 30, 2013	Jul 10, 2013
Quarter 11	Jul 1 – Sep 30, 2013	Oct 10, 2013
Quarter 12	Oct 1 – Dec 31, 2013	Jan 10, 2014
Quarter 13	Jan 1 – Mar 31, 2014	Apr 10, 2014
Quarter 14	Apr 1 – Jun 30, 2014	Jul 10, 2014
Quarter 15	Jul 1 – Sep 30, 2014	Oct 10, 2014
Quarter 16	Oct 1 – Dec 31, 2014	Jan 10, 2015
Quarter 17	Jan 1 – Mar 31, 2015	Apr 10, 2015
Quarter 18	Apr 1 – Jun 30, 2015	Jul 10, 2015
Quarter 19	Jul 1 – Sep 30, 2015	Oct 10, 2015
Quarter 20	Oct 1 – Dec 31, 2015	Jan 10, 2016

(3) Part I.A. section to be included in current permit reissuance is as follows:

A. LIMITATIONS AND MONITORING REQUIREMENTS

- 1. During the period beginning with the permit's effective date and lasting until the permit's expiration date, the permittee is authorized to discharge from Outfall **001**.
- a. Such discharges shall be limited and monitored by the permittee as specified below:

		DISCHARO	SE LIMITS		MONITOR REQUIREN	
EFFLUENT CHARACTERISTICS	MONTHLY AVERAGE	WEEKLY AVERAGE	MINIMUM	MAXIMUM	FREQUENCY	SAMPLE TYPE
720 Toxicity, Chronic (TU _C)[C.dubia] ⁽¹⁾ (Interim)	NA	NA	NA	NA	1/Quarter	24 HC
720 Toxicity, Chronic (TU _C)[C.dubia] ⁽²⁾⁽³⁾ (Final)	NA	NA	NA	1.38	1/Quarter	24 HC

NA = Not Applicable 24HC = 2

24HC = 24-Hour Composite

Notes:

- (1) See Part I.D. for monitoring requirements for Whole Effluent Toxicity.
- (2) See Part I.C. for limit requirements for Whole Effluent Toxicity.
- (3) See Part I.B.X. for Schedule of Compliance.
- (3) Part I.B.X section to be included in current permit reissuance is as follows:

B.X. COMPLIANCE SCHEDULE FOR CHRONIC WHOLE EFFLUENT TOXICITY LIMIT

The permittee shall achieve compliance with the final limit for Chronic Whole Effluent Toxicity as specified in Part I.A.1 in this permit in accordance with the following schedule:

	SCHEDULE OF COMPLIANCE FOR CHI	RONIC WHOE EFFLUENT TOXICITY
1.	Prepare progress reports.	Annually beginning 1 year from the permit effective date.
2.	Achieve compliance with the final effluent limitation for Final Chronic Whole Effluent Toxicity.	No later than 4 years from the permit effective date.

No later than 14 calendar days following the dates identified in the above schedules of compliance, the permittee shall submit to the Piedmont Regional Office, either a report of progress or, in the case of specific actions being required by identified dates, a written notice of compliance or noncompliance. In the latter case, the notice shall include the cause of noncompliance, any remedial actions taken, and the probability of meeting the next scheduled requirement.

1	АВ	С	D	Е	F	G	Н		J	K	L	M	N	0
	Spread	lsheet f	or det	ermina	tion of	WET te	st endp	oints or	WET I	imits				
Ì	•						-							
Ì	Excel 97			Acute End	dpoint/Permi	t Limit	Use as LC ₅₀ in	n Special Con	dition, as TU	a on DMR	2			
t	Revision Da	e: 01/10/05												
1	File: WETLI	M10.xls		ACUTE	100% =	NOAEC	LC ₅₀ =	NA	% Use as	NA	TUa			
+	(MIX.EXE requ				10070		- 30		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
t	(,		ACUTE WL	Aa	0.3	Note: Inform t	he permittee th	at if the mea	n of the da	ta exceeds			
1							this TUa:	1.0	a limit may re	sult using	WLA.EXE			
)									-					
				Chronic En	dpoint/Permit	Limit	Use as NOEC	in Special Co	ndition, as 1	Uc on DN	/IR			
2														
ì				CHRONIC	1.40691066	TU _c	NOEC =	72	% Use as	1.38	TU _c			
				BOTH*	3	TUc	NOEC =	34	% Use as	2.94	TUc			
I	Enter data in the cells wi	th blue type:		AML	1.40691066	TU _c	NOEC =	72	% Use as	1.38	TUc			
1														
	Entry Date:	12/01/10		ACUTE W		3		Note: Inform t						
	Facility Name:	Tyson Foods -	Glen Allen	CHRONIC		1		of the data exc			1.0			
		VA0004031		* Both means	acute expressed a	as chronic		a limit may res	ult using WL	A.EXE				
1	Outfall Number:	001		0/ Ele 4: 1	o upod from 1	IIV EVE		Difuser /	alina atau-ka					
١,	Plant Flow:	2.067	MGD	% FIOW to b	e used from N	ΙΙΛ.ΕΛΕ		Difuser /mode Enter Y/N	eling study? N					
_	Acute 1Q10:		MGD	100	%			Acute	N1	·1				
-	Chronic 7Q10:		MGD	100				Chronic	1					
Ť					, ,									
1	Are data available to calcu	late CV? (Y/I	N)	у	(Minimum of 1	0 data points,	same species,	needed)		Go to Pag	e 2			
1	Are data available to calcu	late ACR? (Y/I	N)	n	(NOEC <lc50< td=""><td>do not use gi</td><td>reater/less than</td><td>data)</td><td></td><td>Go to Pag</td><td>e 3</td><td></td><td></td><td></td></lc50<>	do not use gi	reater/less than	data)		Go to Pag	e 3			
3														
)					101-									
_	IWC _a	100		flow/plant flow			IWCa is >33%							
ا	IWC _c	100	% Plant	flow/plant flow	w + 7Q10	NOAE	C = 100% test	/endpoint for	use					
4.	Dilution and:		100"	WO-										
	Dilution, acute	1												
ď	Dilution, chronic		100/1	WCC										
١	WLAa	0.3	Instream c	riterion (0.3 T	'Ua) X's Dilution	acute								
4	WLA _c				Uc) X's Dilution									
	WLA _{a,c}				ts acute WLA to									
ď	VVLJ va,c		, non no	Lita conver	is dodie WEXT	ornorno armo								
١,	ACR -acute/chronic ratio	10	LC50/NOE	C (Default is	10 - if data are	available, use	tables Page 3)						
	CV-Coefficient of variation													
	Constants eA	0.46345743	Default = 0).41										
I	eB	0.652043199												
]	eC	2.157695476												
4	eD	2.157695476	Default = 2	2.43 (1 samp)	No. of samples	1	**The Maximum				1.00			
١.	ΙΤΛ	1.39037229	MI Ac a VI	2.24			LIA, X'S eC. Th	e LTAa,c and MI	L using it are	ariven by t	ne ACR.			
	4,0		WLAa,c X'		+					Doug-le-1	NOEC'-	0/		
_	-	0.652043199			22 22222	(Duntanta fi		- 4		Rounded I		%		
	4,0	3	TUc	NOEC =			m acute/chroni	• • •		NOEC =		34 %		
4			TUc	NOEC =			m chronic toxic	ity)		NOEC =		72 %		
1	AML with lowest LTA	1.40691066	TU _c	NOEC =	/1.077719	Lowest LTA >	('s eD			NOEC =		72		
1	IE ONLY ACUTE ENDS	OINIT/LIMIT 10	NEEDED (CALL/EDT N	DI EDOM TU	- TII								
+	IF ONLY ACUTE ENDP	OINT/LIMIT IS	NEEDED, (JONVEK I MI	DL FROM TU _c 1	U IUa				Down dead!	CEO's	0/		
4.	MDL with LTA	0.2	TH	LCEO	222 22222	0/	Line NOAEC	1000/		Rounded I		%		
		0.3	TUa	LC50 =	333.333333		Use NOAEC=			LC50 =	NA	%		
Πſ	MDL with LTA _c	0.140691066	ıUa	LC50 =	710.777186	70	Use NOAEC=	100%		LC50 =	NA			
┪														

А	В	С	D	Е	F	G	Н		J	K	L	M	N	0
59	Dogo 2	Fallow the a	livaatian	to dovo	lan a aita a	nacific CV	/acaffician	t of verieti	an\					
60	Page 2 -	Follow the o	irections	to deve	iop a site s	респіс Су	(coemicien	t of variati	on)					
62	IE VOLLHAV	/E AT LEAST 10	DATA DOIN	ITC TUAT		Vertebrate			Invertebrate					
63		TIFIABLE (NOT		NIS INAI		IC ₂₅ Data			IC ₂₅ Data					
				FITUED										
64		CIES, ENTER TI				or LC Data	I NI of Jose		or LC Data	I NI of Jose				
65		6" (VERTEBRAT				LC ₅₀ Data	LN of data		LC ₅₀ Data	LN of data				
66		TEBRATE). THE								0.000000				
67		FOR THE CALC			1			1	1.00	0.000000				
68		HE DEFAULT VA			3			2		1.469676				
70		WILL CHANGE		15	3			3		0.000000				
70	ANTIHING	OTHER THAN O	.0.		5			4		0.798508				
72					6			5		0.000000				
73					7			7		0.364643				
74	Coofficient	of Variation for ef	fluont toete		8			8	1.44	0.000000				
75	COGINCIEII C	n vanauon ioi ei	nuent tests		9			9		0.000000				
76	CV =	0.493373209	(Default 0 6	:)	10			10		0.182322				
77	CV =	0.493373209	(Delault 0.0	"	11			11		0.162522				
	ð ² =	0.047000004								0.37 1304				
78		0.217863334			12			12						
79	ð =	0.466758325			13			13						
80	I laina tha la	a variance to de	rolon o A		14			14						
81	Using the lo	g variance to de (P. 100, step 2			16			16						
83	7 1 001 (97% probability s		lo.	17			17						
84	A =	-0.76904074	iai iioiii iab	le	18			18						
85	eA =	0.46345743			19			19						
86	ea =	0.40343743			20			20						
87	I Ising the Io	g variance to de	velon eB		20			20						
88	Coming the lo	(P. 100, step 2			St Dev	NEED DATA	NEED DATA	St Dev	1 0112116	0.4667583				
89	ð₄² =	0.059074509			Mean	0		Mean	1.5145498					
90	Õ ₄ =	0.243052482			Variance	0		Variance	1.022549					
	0 ₄ = B =					0				0.217003				
91	eB =	-0.42764446			CV	U		CV	0.4933732					
93	eb =	0.652043199												
94	Lloina the le	g variance to de	volon oC											
95	Using the lo	(P. 100, step 4												
96		(i . 100, step 4	a 01 13D)											
97	ð ² =	0.217863334												
98	0 = Õ=	0.466758325												
98	0 = C =	0.769040743												
100	eC =	2.157695476												
101	eC =	2.13/0934/6												
102	Lleing the le	g variance to de	velon eD											
103	Using the IO	(P. 100, step 4												
104	n =	(F. 100, Step 4		er will most li	kely stay as "1"	for 1 sample	month							
105	ð _n ² =	0.217863334	o mannbe			, .c. i sample/								
106	ð₀ =	0.466758325												
107	D =	0.769040743												
108	eD =	2.157695476												
109														

	В	С	D	E	F	G	Н		J	K L	M N
	Daga 2 I	Follow direc	tions to	dovolon (a cita caasi	fic ACD (A	outo to Ch	ronio Batia	-/		
	Page 3 - I	Follow direc	tions to	aevelop a	a site speci	TIC ACR (A	cute to Cn	ronic Ratio)		
-1-4	in a Anuta/Ohaa	ia Datia (ACD)				in defined on					
	nine Acute/Chron chronic, tested										
							e less trian trie	acule			
50, SILIC	e the ACR divid	es the LC ₅₀ by t	HE NOEC.	LC ₅₀ S > 1007	6 SHOULD HOLDE	e useu.					
								1			10501 / 01 1 5111
		Table 1. ACR	using Verte	ebrate data							NOEC's to Chronic TU's
										for use in V	
									Table 3.	ACR used:	10
Set	# LC ₅₀	NOEC	Test ACR	Logarithm	Geomean	Antilog	ACR to Use				
	1 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA			Enter LC ₅₀ TUc	Enter NOEC TUC
	2 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		1	NO DATA	NO DATA
	3 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		2	NO DATA	NO DATA
	4 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		3	NO DATA	NO DATA
	5 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		4	NO DATA	NO DATA
	6 #N/A	#N/A #N/A		#N/A		#N/A	NO DATA			NO DATA	NO DATA
			#N/A #N/A		#N/A #N/A		NO DATA		5		
		#N/A	#N/A	#N/A	#N/A	#N/A			6	NO DATA	NO DATA
	8 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		7	NO DATA	NO DATA
	9 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		8	NO DATA	NO DATA
	10 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		9	NO DATA	NO DATA
				100 (Laborate A. C.		_		10	NO DATA	NO DATA
				ACR for ver	tebrate data:		0	<u>"</u>	11	NO DATA	NO DATA
									12	NO DATA	NO DATA
		Table 1. Result		Vertebrate A			0		13	NO DATA	NO DATA
		Table 2. Result	t:	Invertebrate			0		14	NO DATA	NO DATA
				Lowest ACR	₹		Default to 10		15	NO DATA	NO DATA
									16	NO DATA	NO DATA
		Table 2. ACR	using Inve	rtebrate data	a				17	NO DATA	NO DATA
									18	NO DATA	NO DATA
									19	NO DATA	NO DATA
Set	# LC ₅₀	NOEC	Test ACR	Logarithm	Geomean	Antilog	ACR to Use		20	NO DATA	NO DATA
	1 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				
	2 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		If W/I A EYE	datarminas that an acute	limit is needed, you need to
	3 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA			Uc answer you get to Tl	
									1		
	4 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		enter it here:		%LC ₅₀
	5 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA			NO DATA	TUa
	6 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				
	7 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				
	8 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				
	9 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				
	10 #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				
				ACR for ver	tebrate data:		0)			
								<u> </u>			
			DII 117:-	N 055:-					1		
			DILUTIO	N SERIE	S TO RECO	OMMEND					
	Table 4.		DILUTIO	N SERIE		<u>DMMEND</u>	Limit				
	Table 4.		DILUTIO	N SERIE	Monitoring			THe			
		ioo horada			Monitoring % Effluent	TUc	Limit % Effluent	TUc			
	Dilution ser	ies based on	data mear		Monitoring		% Effluent				
	Dilution ser	ies based on	data mear		Monitoring % Effluent 100	TUc		<u>TUc</u>			
	Dilution ser		data mear		Monitoring % Effluent	TUc	% Effluent				
	Dilution ser	ies to use for	data mear		Monitoring % Effluent 100	TUc	% Effluent 72				
	Dilution ser Dilution ser Dilution fac	ies to use for tor to recomm	data mear limit nend:		Monitoring % Effluent 100 0.5	TUc 1.0	% Effluent 72 0.8485281	1.3888889			
	Dilution ser Dilution ser Dilution fac	ies to use for	data mear limit nend:		Monitoring % Effluent 100 0.5	TUc 1.0	72 0.8485281 100.0	1.3888889			
	Dilution ser Dilution ser Dilution fac	ies to use for tor to recomm	data mear limit nend:		Monitoring % Effluent 100 0.5 100.0 50.0	TUc 1.0 1.00 2.00	% Effluent 72 0.8485281 100.0 84.9	1.3888889 1.00 1.18			
	Dilution ser Dilution ser Dilution fac	ies to use for tor to recomm	data mear limit nend:		Monitoring % Effluent 100 0.5	TUc 1.0	72 0.8485281 100.0	1.3888889			
	Dilution ser Dilution ser Dilution fac	ies to use for tor to recomm	data mear limit nend:		Monitoring % Effluent 100 0.5 100.0 50.0 25.0	1.00 2.00 4.00	% Effluent 72 0.8485281 100.0 84.9 72.0	1.3888889 1.00 1.18 1.39			
	Dilution ser Dilution ser Dilution fac	ies to use for tor to recomm	data mear limit nend:		Monitoring % Effluent 100 0.5 100.0 50.0 25.0 12.5	1.00 1.00 2.00 4.00 8.00	% Effluent 72 0.8485281 100.0 84.9 72.0 61.1	1.3888889 1.00 1.18 1.39 1.64			
	Dilution ser Dilution ser Dilution fac	ies to use for tor to recomm ies to recomn	data mear limit nend: nend:		Monitoring % Effluent 100 0.5 100.0 50.0 25.0 12.5 6.25	1.00 2.00 4.00 8.00 16.00	72 0.8485281 100.0 84.9 72.0 61.1 51.8	1.3888889 1.00 1.18 1.39 1.64 1.93			
	Dilution ser Dilution ser Dilution fac	ies to use for tor to recomm	data mear limit nend: nend:		Monitoring % Effluent 100 0.5 100.0 50.0 25.0 12.5 6.25 3.12	1.00 2.00 4.00 8.00 16.00 32.05	% Effluent 72 0.8485281 100.0 84.9 72.0 61.1 51.8 44.0	1.3888889 1.00 1.18 1.39 1.64 1.93 2.27			
	Dilution ser Dilution ser Dilution fac	ies to use for tor to recomm ies to recomn	data mear limit nend: nend:		Monitoring % Effluent 100 0.5 100.0 50.0 25.0 12.5 6.25	1.00 2.00 4.00 8.00 16.00	72 0.8485281 100.0 84.9 72.0 61.1 51.8	1.3888889 1.00 1.18 1.39 1.64 1.93			
	Dilution ser Dilution ser Dilution fac	ies to use for tor to recomm ies to recomn	data mear limit nend: nend:		Monitoring % Effluent 100 0.5 100.0 50.0 25.0 12.5 6.25 3.12	1.00 2.00 4.00 8.00 16.00 32.05	% Effluent 72 0.8485281 100.0 84.9 72.0 61.1 51.8 44.0	1.3888889 1.00 1.18 1.39 1.64 1.93 2.27			

Cell: C138
Comment: Invertebrates are:

Ceriodaphnia dubia
Mysidopsis bahia

TMP Data Evaluation/Review VA0004031, Tyson Foods/Farms

Attachment I: NPDES Industrial Permit Rating Work Sheet

NPDES PERMIT RATING WORK SHEET Regular Addition DiscretionaryAddition NPDES NO. VA0004031 Score change, but no status change Deletion Facility Name: __Tyson Farms, Inc. _Glen Allen, VA Receiving Water: Chickahominy River, UT_ Reach Number: Outfall 001 2-XDD001.12; Outfall 002 2-XDD000.95 Is this facility a steam electric power plant (SIC=4911) with one or more Is this permit for a municipal separate storm sewer serving a population of the following characteristics? greater than 100,000? 1. Power output 500 MW or greater (not using a cooling pond/lake) 2. A nuclear power plant YES; score is 700 (stop here) X NO (continue) 3. Cooling water discharge greater than 25% of the receiving stream's 7Q10 flow rate YES; score is 600 (stop here) X NO (continue) **FACTOR 1: Toxic Pollutant Potential** PCS SIC Code: Primary SIC Code: 2015 Other SIC Codes: Industrial Subcategory Code: 000 (Code 000 if no subcategory) Determine the Toxicity potential from Appendix A. Be sure to use the TOTAL toxicity potential column and check one) **Toxicity Group** Code Points **Toxicity Group Toxicity Group Points** Code **Points** Code ☐ No process waste streams 0 0 □ 3. 3 □ 7. 7 35 15 5 **□**4. X1. 4 20 □ 8. 8 40 1 2 5 □ 2. 10 □ 9. 9 □ 5. 25 45 □ 6. 6 30 □ 10. 10 50 Code Number Checked: _1_ Total Points Factor 1: __5__ **FACTOR 2: Flow/Stream Flow Volume** (Complete either Section A or Section B; check only one) Section A Wastewater Flow Only Considered Section B Wastewater and Stream Flow Considered Wastewater Type Code **Points** Wastewater Type Percent of instream Wastewater Concentration (See Instructions) (See Instructions) at Receiving Stream Low Flow Type I: Flow < 5 MGD 11 0 **Points** Flow 5 to 10 MGD 12 10 Code Flow > 10 to 50 MGD 13 20 Type I/III: Flow > 50 MGD 14 30 < 10 % 41 0

Type II: Flow < 1 MGD

Type III: Flow < 1 MGD

Flow 1 to 5 MGD

Flow > 10 MGD

Flow 1 to 5 MGD

Flow > 10 MGD

Flow > 5 to 10 MGD

Flow > 5 to 10 MGD

21

22

23

24

31

32

33

34

X

10

20

30

50

0

10

20

30

Code Checked from Section A or B: _22____ **Total Points Factor 2:** _20____

42

43

51

52

53

10

20

0

20

30

10 % to < 50 %

10 % to <50 %

> 50 %

< 10 %

> 50 %

Type II:

FACTOR 3: Conventio (only when limited by the perm			NPDE	IS NO: <u>V</u>	A0004031		
A. Oxygen Demanding Pollutant: (check one)		ne) XBOD \square COD \square O	XBOD COD Other:				
Permit Limits: (ch]	C < 100 lbs/day 100 to 1000 lbs/day > 1000 to 3000 lbs/day > 3000 lbs/day	Code 1 2 3 4	Points 0 5 15 20		1 34	
Daily max 8mg/L X1.25 MD	G X 8.34lbs/N	MG/mg/L = 83.4 lbs			Code Check		
B. Total Suspended Solids (T	rss)				Points Sc	cored:_0_	
Permit Limits: (ch	eck one) Σ	X < 100 lbs/day 100 to 1000 lbs/day > 1000 to 5000 lbs/day > 5000 lbs/day	Code 1 2 3 4	Points 0 5 15 20			
Daily max 7.5mg/L X1.25 M	DG X 8.34lbs	/MG/mg/L = 78.2 lbs				ecked: _1	
C. Nitrogen Pollutant: (check	one)	X Ammonia O				ored:0	_
Permit Limits: (ch		Nitrogen Equivalent < 300 lbs/day 300 to 1000 lbs/day > 1000 to 3000 lbs/day > 3000 lbs/day	Code 1 2 3 4	Points 0 5 15 20			
Daily max 8mg/L X1.25 MD			7	20	Code Che	ecked: _1	
					Points Sc	ored:0_	
					Total Points Fac	tor 3:0_	
		FACTOR 4: Pub	lic Healt	h Impact			
		ated within 50 miles downstream of a tter supply may include infiltration §					
☐ YES (If yes, check toxicit	y potential nu	mber below)					
X NO (If no, go to Factor 5)							
Determine the <i>human health</i> health toxicity group column		tial from Appendix A. Use the same below)	e SIC code ar	nd subcategory refere	ence as in Factor 1. (E	Be sure to us	se the <u>human</u>
Toxicity Group Code	e Points	Toxicity Group	Code	Points	Toxicity Group	Code	Points
☐ No process waste streams 0	0	□ 3.	3	0	□ 7.	7	15
□ 1. 1	0	□ 4.	4	0	□ 8.	8	20
□ 2. 2	0	□ 5.	5	5	□ 9.	9	25

□ 6.

6

10

□ 10.

Code Number Checked: ___NA__ **Total Points Factor 4**:__0___

10

30

Α.					eater quality factors of the receiving or has a wasteload allocation been	stream (rather than technology-based federal assigned to the discharge:
	X	Y	es	Code 1	Points 10	
		N	0	2	0	
В.	Is the receiving w	vater in co	mpliance with app	olicable water quality	standards for pollutants that are w	ater quality limited in the permit?
	***			Code	Points	
	X			1	0	
				2	5	
<i>C</i> .	Does the effluent	discharge	d from this facility			standards due to whole effluent toxicity?
	X	Y	es	Code 1	Points 10	
		N	0	2	0	
	Code Number Ch	necked: A	<u>1</u> B <u>1</u>	C 1		
	Points Factor 5:			+ C <u>10</u> = <u>20</u>	TOTAL	
			EA C	FOR C P	N . C I W	
					mity to Near Coastal W	
<i>A</i> .	Base Score: Ente	r flow cod	e here (from Fact	or 2): <u>22</u>	Enter the multiplication fa	ctor that corresponds to the flow code: _0.30
	Check appropriat	e facility I	HPRI Code (from	PCS):		
	HPRI#	Code	HPRI Score		Flow Code	Multiplication Factor
	$\begin{array}{ccc} \square & 1 \\ \square & 2 \end{array}$	1 2	20 0		11, 31, or 41 12, 32, or 42	0.00 0.05
	$egin{array}{cccc} \square & & 3 & & & \\ X & & 4 & & & & \end{array}$	3 4	30 0		13, 33, or 43 14 or 34	0.10 0.15
	\Box 5	5	20		21 or 51	0.10
					22 or 52 23 or 53	0.30 0.60
	HPRI code check	ked:4_			24	1.00
	Base Score: (HPI	RI Score) _	0 X (Multipl	ication Factor) 0.30	= 0 (TOTAL POINTS)	
	B. Additional Poir	ate 🗆 NFP	Program		C. Additional Points □ 0	Great Lakes Area of Concern
	For a facility	that has a	n HPRI code of 3,		For a facility that has	an HPRI code of 5, does the facility
			one of the estuar			pollutants of concern into one of the
			l Estuary Protections Structions) or the	on	Great Lakes 31 area.	s of concern (see Instructions)
	Chesapeake I		, , , , , , , , , , , , , , , , , , , ,			
			ints			Points
	☐ Yes 1☐ No 2				☐ Yes 1 1 1 ☐ No 2 0	0
	NA				NA	
	Code Number Ch	necked:			A <u>4</u> B <u>NA</u> C	_NA
	Points Factor	6 : A <u>0</u>	+ B <u>NA</u> + C	$\frac{NA}{NA} = 0$ TO	TAL	

SCORE SUMMARY NPDES NO.

Factor	Description	Total Points
1	Toxic Pollutant Potential	5
2	Flows/Streamflow Volume	30
3	Conventional Pollutants	0
4	Public Health Impacts	
5	Water Quality Factors	
6	Proximity to Near Coastal Waters	0
	TOTAL (Factors 1 through 6)	55
S1. Is the total	score equal to or greater than 80? Yes (Facility is a major)	X No
S2. If the answ	ver to the above questions is no, would you like this facility to be	discretionary major?
X No		
☐ Yes (Ad	d 500 points to the above score and provide reason below:	
Reason:		
NEW S	CORE: 55	
OLD SO	CORE: _55	

_<u>Janine Howard</u>___ Permit Reviewer's Name

(804) 698-4299 Phone Number

<u>April 15, 2014</u> Date **Attachment J: Stormwater Flow Evaluation Report and Drainage Maps**

June 10, 2015

Mr. Tim Lockhart EHS Manager **Tyson Foods – Glen Allen Complex** 13264 Mountain Road Glen Allen, VA 23059

RE: Stormwater Flow Evaluation Report
Tyson Foods Glen Allen Complex
Cardno Project TF001

Dear Mr. Lockhart:

Per your request Cardno is pleased to provide this report describing our stormwater flow evaluation for the referenced Facility. The purpose of the evaluation was to review the Facility's permitted storm water flows with respect to the potential for contacting or mixing with the plant's process water. The scope of services, as originally outlined in our January 23, 2015 proposal, included the following tasks:

- Compile a map of storm water watersheds and drainage patterns across the entire site based on aerial photography, publically-available LIDAR topographic survey data and client-provided information;
- 2. Inventory, describe and document storm water sources within each watershed; and,
- 3. Document the absence of contact between storm water and process water flows.

The work performed and findings for each task are described herein.

Information Review

The following data sources were reviewed for this project:

- 1. http://www.hanovercountygis.org/ (GIS Topography);
- 2. January 15, 2014 Facility Stormwater Pollution Prevention Plan (SWPPP);
- Sheet M2, Drainage Areas, Site Plan and Erosion & Sediment Control Plan, Reid Engineering circa 1992 (SWM Map); and,
- 4. May 7, 2015 site visit (Site Visit).

The information collected was used to compile the two attached maps; Water Management Site Plan (Figure 1), and Water Management Site Plan Insets (Figure 2).

Storm Water Management Mapping

GIS Topography suggests that storm water drains to a central surface water feature that crosses

Cardno, Inc.

10988 Richardson Road Ashland, VA 23005 USA

Phone +1 804 798 6525 Fax +1 804 798 5907 www.cardno.com

www.cardno.com

the Site from north to south, with some storm flow directed to a drainage way located along the southern boundary, as illustrated on **Figure 1**. The central drainage feature is identified in the SWPPP as an unnamed tributary to the Chickahominy River. These general conditions were confirmed during the Site Visit.

The Facility's SWPPP describes seven (7) areas for the purposes of storm water management. These are identified as:

- Area 1 Employee Parking/Front Office Parking
- Area 2 Live Receiving/Pet Food Loading/Wet Dock
- Area 3 Pet Food Refrigeration/Hydraulic Room/Boiler Room/Offal Room/Maintenance Shop/Maintenance Shed/Pallet Storage Shed/Chemical Storage Shed/Drummed Petroleum Storage Area
- Area 4 Main Plant Refrigeration/Shipping and Labeling
- Area 5 Service Center/Fueling Bay/Wash Bay/Pump House
- Area 6 Wastewater Treatment Plant (WWTP)
- Area 7 Live Holding Shed/Chicken Trailer Staging/Remote Trailer Parking

The extents of each area were illustrated on the SWM Map listed as reference 3, and are shown on Figure 1.

In general, storm water flow within each SWM area is either directed to flow to collection points for treatment prior to discharge, or directed to flow directly to a surface water feature. The SWM management systems include structures that collect stormwater and direct it to the process water piping system for treatment at the WWTP, a bioretention cell (BMP-14) to treat stormwater prior to discharge to surface water, and a stormwater pipe network that discharges directly to surface water.

Regarding the stormwater structures that transmit storm water to the process water treatment system, it is our understanding that these inverts are normally open to receive storm water flow. Further, it is our understanding that BMP-12 located in Area 2, remote trailer parking, may be covered for brief periods of time in advance of hurricane storm conditions.

These features and SWM for each area are illustrated on Figures 1 and 2, and are summarized below.

<u>Area 1</u>

Stormwater from the employee parking area is directed to a drop inlet (DI-3) where it enters storm sewer piping that discharges to the central surface water feature to the east. Stormwater from the front office parking area is directed to DI-1, where it enters process water piping for treatment by the WWTP. Storm water from these areas is considered to be non-contact water with respect to Facility processes.

Area 2

Area 2 includes Live Receiving/Wet Dock operational activities where live, or unprocessed product is handled on the north side of the Facility as shown on **Figure 1**. A close up of this area is shown on **Figure 2**, **Inset 1**. Storm water that falls on these activities is collected by DI-2, DI-9, Pit Pump and trench drain (BMP-5) where it enters the process water piping network for treatment at the WWTP.

In the parking area beyond the loading/receiving docks, storm water is directed to flow to a bioretention cell (BMP-14) for treatment prior to discharge to surface water. BMP-14 was constructed to manage potential incidental contact with fecal residue that might occur as delivery trucks are moved through the area.

Mr. Tim Lockhart Page 3

Area 3

Storm water in Area 3 does not come in contact with unprocessed product. Storm water in this area is directed to DI-5, DI-10 and/or wet wells 1 and 2 (WW-1 &2), where it enters the process water pipe network for treatment by the WWTP.

Area 4

Storm water in Area 4 does not come in contact with unprocessed product. Storm water in this area is directed to DI-15A-15B-15C or to DI-13 where it enters the storm sewer piping prior to discharge to surface water.

Area 5

Storm water in Area 5 does not come in contact with unprocessed product. Storm water in this area is directed to DI-12 or to the east where it discharges to surface water.

Area 6

Storm water in Area 6 falls on the WWTP operations area, does not come in contact with unprocessed product. Storm water in this area either falls directly into self-contained treatment units where it enters the treatment process or it falls on non-contact areas where it discharges to surface water.

Area 7

Area 7 includes the live holding shed/chicken trailer staging and remote trailer parking areas, where stormwater could come in contact with unprocessed product or iced product drippings. Close-ups of these areas are shown on **Figure 2**. Insets 2 and 3.

At the remote trailer parking area, stormwater is directed to a sloped concrete pad with invert (BMP-14), where it enters the process water system and is treated by the WWTP.

At the live holding shed, live product trailers are parked under roof so as to not be in contact with stormwater. Drips and fecal matter falling from the trailers are directed via sloped concrete pad to a central trench drain (BMP-12) where the flow enters the process water piping and treatment system and is treated by the WWTP.

In the area to the south of the shed, storm water is directed toward BMP-14 (bioretention cell) where it is treated prior to discharge to surface water. BMP-14 was constructed to manage potential incidental contact with fecal residue that might occur as delivery trucks are moved through the area.

Evaluation of Contact Potential

The following observations are made with respect to the potential for stormwater to be exposed to fecal matter and/or E. coli bacteria that originate from Facility activities under normal operating conditions:

- Of the seven SWM areas, only Areas 2 and 7 exhibit conditions where storm water flow could come in contact with bacteria originating from Facility operations.
- For Area 2, all storm water that falls on the product handling area is directed to storm water structures that
 connect to process water piping for treatment at the Facility WWTP. Storm water that falls outside of the
 product handling area is directed to BMP-14 for treatment by the bioretention cell.
- For Area 7, storm water that falls on product handling areas is either isolated from the process by a roofing system, or is collected and directed to the process water system for treatment at the WWTP. Storm water that falls outside of the product handling area where live product delivery trucks are moved is directed to BMP-14 for treatment by the bioretention cell.

Based on evaluation the information presented herein, it is our opinion that stormwater coming in contact with fecal matter and/or E. coli originating from normal Facility operations does not discharge directly to surface water, but rather is collected by stormwater management structures and delivered to the process water system for treatment by the Facility WWTP.

Cardno is pleased to be of service to Tyson Foods. If you have any questions or require additional information, please contact us at 804-798-6525 or at eric.powers@cardno.com.

Sincerely,

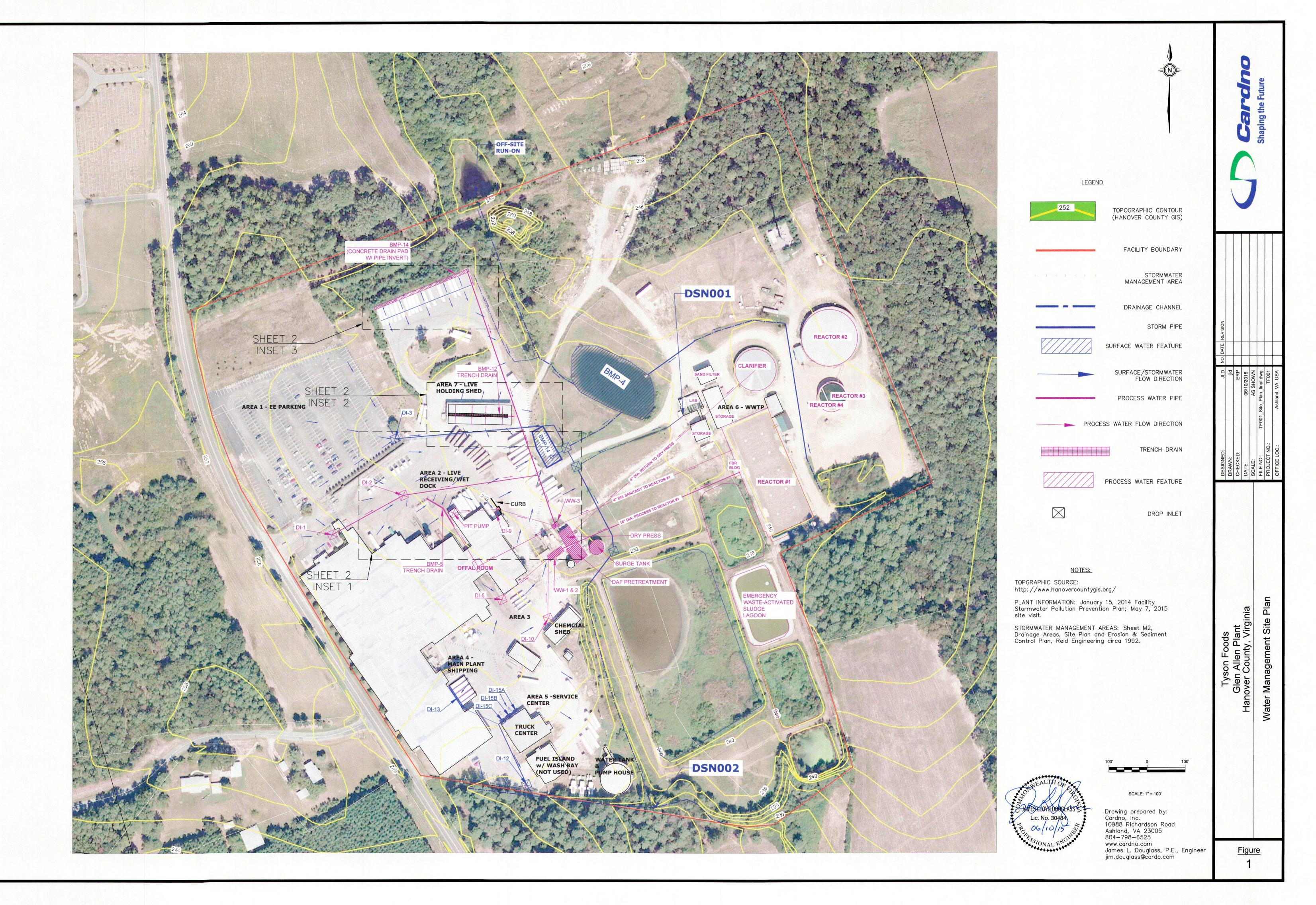
James L. Douglass CAS-III, P.G., P.E.

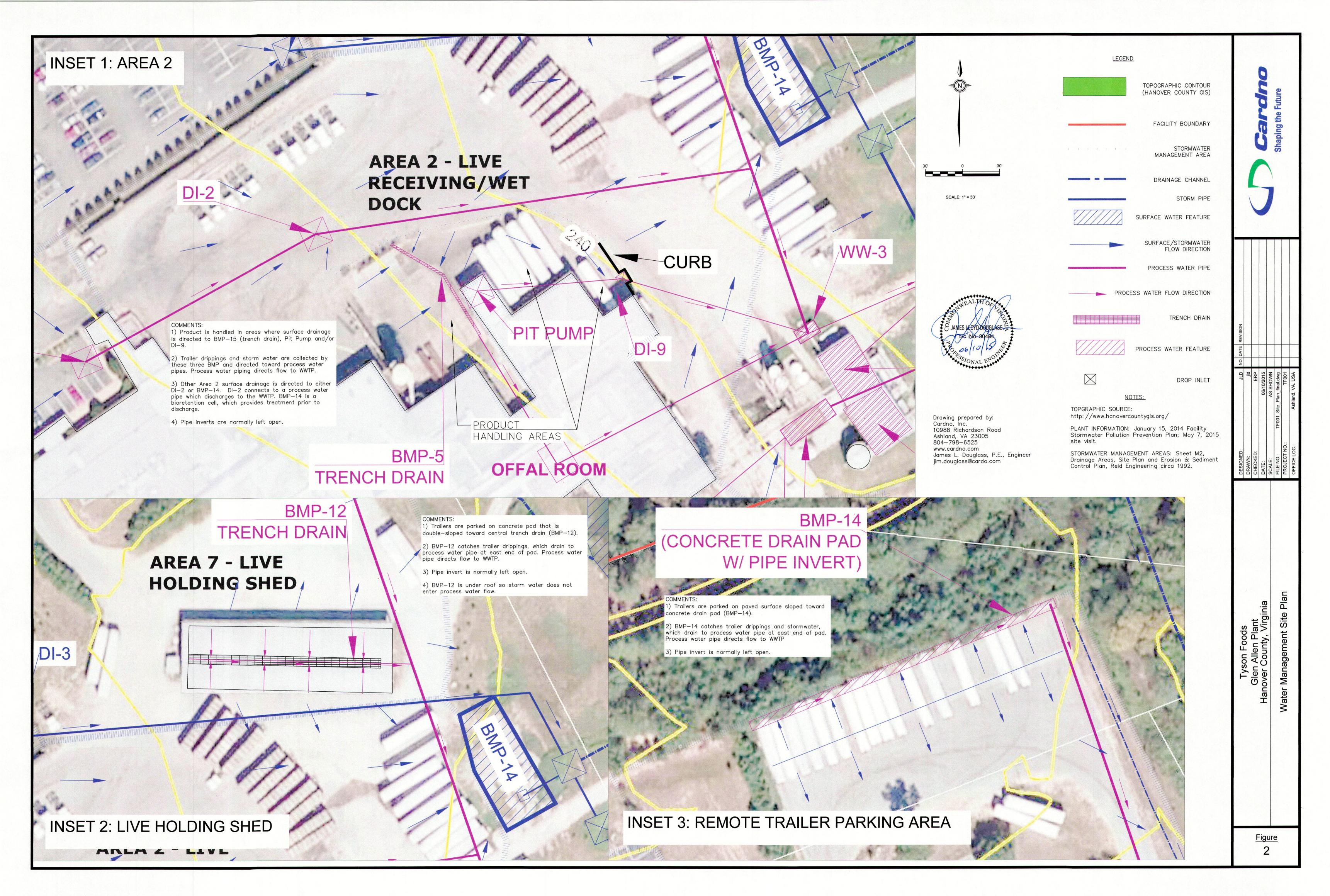
Senior Engineer for Cardno

Direct Line +1 804 433 3537

Email: jim.douglass@cardno.com

Eric R. Powers, C.P.G


Principal for Cardno


Direct Line +1 804 336 0612 Email: eric.powers@cardno.com

Attachments: Figure 1, Water Management Site Plan

Figure 2, Water Management Site Plan Insets

www.cardno.com

Attachment K: Storm Water Data (Outfall 002)

Stormwater Data Outfall 002

Outfall 002	FI	ow	р	Н	BOD5	TSS	Fecal Coliform	TP	NH ₃	TKN	Oil&Grease
	(Me	GD)	(SU)		(mg/L)	(mg/L)	(#/100ml)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Due Date	AVG	MAX	MIN	MAX	MAX	MAX	MAX	MAX	MAX	MAX	MAX
10-Jun-10	0.809	0.809	6.8	6.8	<ql< td=""><td>4.5</td><td>1600</td><td>0.19</td><td>2</td><td>1.28</td><td><ql< td=""></ql<></td></ql<>	4.5	1600	0.19	2	1.28	<ql< td=""></ql<>
10-Jul-10	0.792	0.792	7.3	7.3	<ql< td=""><td>2.9</td><td>300</td><td><ql< td=""><td><.5</td><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	2.9	300	<ql< td=""><td><.5</td><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<.5	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
10-Jan-11	1.367	1.367	7.0	7.0	<ql< td=""><td>12.2</td><td>1600</td><td>0.55</td><td>1.04</td><td>4.3</td><td><ql< td=""></ql<></td></ql<>	12.2	1600	0.55	1.04	4.3	<ql< td=""></ql<>
10-Oct-12	0.49	0.697	7.2	7.2	<ql< td=""><td>4.6</td><td>500</td><td>0.14</td><td>0.19</td><td>1.04</td><td>7.5</td></ql<>	4.6	500	0.14	0.19	1.04	7.5
10-Apr-12	0.687	1.34	7.0	7.0	5.2	25.8	1600	0.48	0.58	2.29	<5
10-Dec-12	0.49	0.697	7.2	7.2	<ql< td=""><td>4.6</td><td>500</td><td>0.14</td><td>0.19</td><td>1.04</td><td>7.5</td></ql<>	4.6	500	0.14	0.19	1.04	7.5
10-Jun-13	0.49	0.697	7.2	7.2	<ql< td=""><td>4.6</td><td>500</td><td>0.14</td><td>0.19</td><td>1.04</td><td>7.5</td></ql<>	4.6	500	0.14	0.19	1.04	7.5
10-Dec-13	0.725	1.976	6.7	6.7	18.9	228	1600	0.48	0.46	2.45	<ql< td=""></ql<>
10-Jun-14	1.005	1.005	7.0	7.0	11.4	99.2	1600	0.72	0.68	4.71	<ql< td=""></ql<>
10-Dec-14	0.881	0.881	7.2	7.2	9.1	213	1600	1.09	0.41	1.37	<ql< td=""></ql<>
AVG	0.774	1.026	7.06	7.1	11.2	59.9	1140	0.44	0.64	2.2	7.5
90th percentile	1.04	1.43	7.21	7.21	16.7	215	1600	0.79	1.23	4.38	7.5
10th percentile	0.49	0.70	6.79	6.79	6.37	4.34	480	0.14	0.19	1.04	7.50

VII. Discharge information (Continued from page 3 of Form 2F)

Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

		Maximum Values (include units)		rage Values clude units)	Number	
Pollutant and CAS Number (if available)	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
Oil and Grease	4 MG/L	N/A	1.76 MG/L	N/A	5	
Biological Oxygen Demand (BOD5)	8.8 MG/L	N/A	3.18 MG/L	n/a	5	
Chemical Oxygen Demand (COD)	88 MG/L	N/A	83 MG/L	N/A	3	
Total Suspended Solids (TSS)	20.67 MG/L	n/A	6.17 MG/L	N/A	5	
Total Nitrogen	39.70 MG/L	N/A	26.57 MG/L	n/a	4	
Total Phosphorus	.187 MG/L	N/A	.097 MG/L	N/A	5	
pН	Minimum	Maximum	Minimum	Maximum		

Part B – List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

require	Maximum Values (include units)		Aver (inc	age Values lude units)	Number	
Pollutant and CAS Number (if available)	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
BOD5	8.8 MG/L	N/A	3.18 MG/L	N/A	5	
TSS	20.67 MG/L	N/A	6.17 MG/L	N/A	5	
Chlorine, res.	<ql gl<="" td="" u=""><td>N/A</td><td><ql gl<="" td="" u=""><td>N/A</td><td>5</td><td></td></ql></td></ql>	N/A	<ql gl<="" td="" u=""><td>N/A</td><td>5</td><td></td></ql>	N/A	5	
Total Phosph	.187 MG/L	N/A	.097 MG/L	N/A	5	
Fecal Colif	1600 N/CML	N/A	1120 N/CML	N/A	5	
oil & Grease	4 MG/L	N/A	1.76 MG/L	N/A	5	
TKN	1.28 MG/L	N/A	1.09 MG/L	N/A	5	
рн	7.6 SU	N/A	7.07 SU	N/A	5	
D.O	6.31 MG/L	N/A	6.03 MG/L	N/A	4	

			- 			
			1			
······································						
					+	
					- 	
					+	
			-		 	
					- 	
			_		_	

Attachment L: Monitoring Frequencies Reductions Calculations

	BOD_5	TSS	Fecal Coliform	TP	TN	Ammonia	Settleable Solids	Zinc, Total	E. coli	O&G	DO	ŗ	Н
Outfall 001 DMR Due Date	(mg/L)	(mg/L)	(MPN/100ml)	(mg/L)	(mg/L)	(mg/L)	(ml/L)	(μg/L)	Geometric Mean (n/100 ml)	(mg/L)	(mg/L)	(5	SU)
	MO AVG	MO AVG	DAILY MAX	MO AVG	MO AVG	MO AVG	MO AVG	MO AVG	MO AVG	MO AVG	MIN	MIN	MAX
10-Jan-12	1.1	2.3	5.67	0.21	6.12	0.2	<ql< th=""><th>6.33</th><th>5.33</th><th><ql< th=""><th>8.17</th><th>5.17</th><th>7.5</th></ql<></th></ql<>	6.33	5.33	<ql< th=""><th>8.17</th><th>5.17</th><th>7.5</th></ql<>	8.17	5.17	7.5
10-Feb-12	2.22	2.1	87.5	0.14	7.09	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>1.53</td><td>6.26</td><td>6.03</td><td>7.4</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>1.53</td><td>6.26</td><td>6.03</td><td>7.4</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>1.53</td><td>6.26</td><td>6.03</td><td>7.4</td></ql<></td></ql<>	<ql< td=""><td>1.53</td><td>6.26</td><td>6.03</td><td>7.4</td></ql<>	1.53	6.26	6.03	7.4
10-Mar-12	1.21	1.78	34	0.22	5.932	0.053	<ql< td=""><td><ql< td=""><td>1</td><td>1.42</td><td>8.61</td><td>6.57</td><td>7.17</td></ql<></td></ql<>	<ql< td=""><td>1</td><td>1.42</td><td>8.61</td><td>6.57</td><td>7.17</td></ql<>	1	1.42	8.61	6.57	7.17
10-Apr-12	1.94	1.95	2	0.23	6.38	0.04	<ql< td=""><td><ql< td=""><td>3</td><td><ql< td=""><td>8.05</td><td>6.13</td><td>7.11</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>3</td><td><ql< td=""><td>8.05</td><td>6.13</td><td>7.11</td></ql<></td></ql<>	3	<ql< td=""><td>8.05</td><td>6.13</td><td>7.11</td></ql<>	8.05	6.13	7.11
10-May-12	0.41	1.34	2	0.08	8.14	0.03	<ql< td=""><td><ql< td=""><td>2</td><td><ql< td=""><td>8.04</td><td>6.03</td><td>7.4</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>2</td><td><ql< td=""><td>8.04</td><td>6.03</td><td>7.4</td></ql<></td></ql<>	2	<ql< td=""><td>8.04</td><td>6.03</td><td>7.4</td></ql<>	8.04	6.03	7.4
10-Jun-12	0.86	1.32	<ql< td=""><td>0.08</td><td>7.4</td><td>0.03</td><td><ql< td=""><td><ql< td=""><td>33</td><td><ql< td=""><td>7.73</td><td>6.54</td><td>7.19</td></ql<></td></ql<></td></ql<></td></ql<>	0.08	7.4	0.03	<ql< td=""><td><ql< td=""><td>33</td><td><ql< td=""><td>7.73</td><td>6.54</td><td>7.19</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>33</td><td><ql< td=""><td>7.73</td><td>6.54</td><td>7.19</td></ql<></td></ql<>	33	<ql< td=""><td>7.73</td><td>6.54</td><td>7.19</td></ql<>	7.73	6.54	7.19
10-Jul-12	0.65	1.34	2	0.17	7.79	0.04	<ql< td=""><td><ql< td=""><td>0.25</td><td>2.85</td><td>7.79</td><td>6.98</td><td>7.39</td></ql<></td></ql<>	<ql< td=""><td>0.25</td><td>2.85</td><td>7.79</td><td>6.98</td><td>7.39</td></ql<>	0.25	2.85	7.79	6.98	7.39
10-Aug-12	0.93	1.6	<ql< td=""><td>0.2</td><td>7.23</td><td>0.02</td><td><ql< td=""><td><ql< td=""><td>1</td><td>2.03</td><td>7.21</td><td>6.43</td><td>7.54</td></ql<></td></ql<></td></ql<>	0.2	7.23	0.02	<ql< td=""><td><ql< td=""><td>1</td><td>2.03</td><td>7.21</td><td>6.43</td><td>7.54</td></ql<></td></ql<>	<ql< td=""><td>1</td><td>2.03</td><td>7.21</td><td>6.43</td><td>7.54</td></ql<>	1	2.03	7.21	6.43	7.54
10-Sep-12	<ql< td=""><td>2.19</td><td><ql< td=""><td>0.21</td><td>5.57</td><td>0.02</td><td><ql< td=""><td><ql< td=""><td>0.4</td><td>1.42</td><td>6.74</td><td>7.01</td><td>7.62</td></ql<></td></ql<></td></ql<></td></ql<>	2.19	<ql< td=""><td>0.21</td><td>5.57</td><td>0.02</td><td><ql< td=""><td><ql< td=""><td>0.4</td><td>1.42</td><td>6.74</td><td>7.01</td><td>7.62</td></ql<></td></ql<></td></ql<>	0.21	5.57	0.02	<ql< td=""><td><ql< td=""><td>0.4</td><td>1.42</td><td>6.74</td><td>7.01</td><td>7.62</td></ql<></td></ql<>	<ql< td=""><td>0.4</td><td>1.42</td><td>6.74</td><td>7.01</td><td>7.62</td></ql<>	0.4	1.42	6.74	7.01	7.62
10-Oct-12	<ql< td=""><td>1.98</td><td><ql< td=""><td>0.24</td><td>6.02</td><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>6.69</td><td>7.1</td><td>7.63</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	1.98	<ql< td=""><td>0.24</td><td>6.02</td><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>6.69</td><td>7.1</td><td>7.63</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	0.24	6.02	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>6.69</td><td>7.1</td><td>7.63</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>6.69</td><td>7.1</td><td>7.63</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>6.69</td><td>7.1</td><td>7.63</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>6.69</td><td>7.1</td><td>7.63</td></ql<></td></ql<>	<ql< td=""><td>6.69</td><td>7.1</td><td>7.63</td></ql<>	6.69	7.1	7.63
10-Nov-12	<ql< td=""><td>1.32</td><td><ql< td=""><td>0.2</td><td>9.65</td><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>0.4</td><td>1.08</td><td>7.03</td><td>6.48</td><td>7.68</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	1.32	<ql< td=""><td>0.2</td><td>9.65</td><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>0.4</td><td>1.08</td><td>7.03</td><td>6.48</td><td>7.68</td></ql<></td></ql<></td></ql<></td></ql<>	0.2	9.65	<ql< td=""><td><ql< td=""><td><ql< td=""><td>0.4</td><td>1.08</td><td>7.03</td><td>6.48</td><td>7.68</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>0.4</td><td>1.08</td><td>7.03</td><td>6.48</td><td>7.68</td></ql<></td></ql<>	<ql< td=""><td>0.4</td><td>1.08</td><td>7.03</td><td>6.48</td><td>7.68</td></ql<>	0.4	1.08	7.03	6.48	7.68
10-Dec-12	1.82	3.31	<ql< td=""><td>0.12</td><td>7.46</td><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>1.58</td><td>7.29</td><td>6.64</td><td>7.1</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	0.12	7.46	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>1.58</td><td>7.29</td><td>6.64</td><td>7.1</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>1.58</td><td>7.29</td><td>6.64</td><td>7.1</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>1.58</td><td>7.29</td><td>6.64</td><td>7.1</td></ql<></td></ql<>	<ql< td=""><td>1.58</td><td>7.29</td><td>6.64</td><td>7.1</td></ql<>	1.58	7.29	6.64	7.1
10-Jan-13	0.47	1.68	22	0.07	10.23	<ql< td=""><td><ql< td=""><td>36</td><td><ql< td=""><td><ql< td=""><td>5.25</td><td>6.52</td><td>7.17</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>36</td><td><ql< td=""><td><ql< td=""><td>5.25</td><td>6.52</td><td>7.17</td></ql<></td></ql<></td></ql<>	36	<ql< td=""><td><ql< td=""><td>5.25</td><td>6.52</td><td>7.17</td></ql<></td></ql<>	<ql< td=""><td>5.25</td><td>6.52</td><td>7.17</td></ql<>	5.25	6.52	7.17
10-Feb-13	<ql< td=""><td>1.69</td><td><ql< td=""><td>0.13</td><td>9.64</td><td>0.72</td><td><ql< td=""><td>32.1</td><td><ql< td=""><td><ql< td=""><td>6.53</td><td>6.74</td><td>7.5</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	1.69	<ql< td=""><td>0.13</td><td>9.64</td><td>0.72</td><td><ql< td=""><td>32.1</td><td><ql< td=""><td><ql< td=""><td>6.53</td><td>6.74</td><td>7.5</td></ql<></td></ql<></td></ql<></td></ql<>	0.13	9.64	0.72	<ql< td=""><td>32.1</td><td><ql< td=""><td><ql< td=""><td>6.53</td><td>6.74</td><td>7.5</td></ql<></td></ql<></td></ql<>	32.1	<ql< td=""><td><ql< td=""><td>6.53</td><td>6.74</td><td>7.5</td></ql<></td></ql<>	<ql< td=""><td>6.53</td><td>6.74</td><td>7.5</td></ql<>	6.53	6.74	7.5
10-Mar-13	<ql< td=""><td>1.48</td><td><ql< td=""><td>0.23</td><td>9.55</td><td>0.35</td><td><ql< td=""><td>33.8</td><td><ql< td=""><td><ql< td=""><td>9.25</td><td>6.43</td><td>7.14</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	1.48	<ql< td=""><td>0.23</td><td>9.55</td><td>0.35</td><td><ql< td=""><td>33.8</td><td><ql< td=""><td><ql< td=""><td>9.25</td><td>6.43</td><td>7.14</td></ql<></td></ql<></td></ql<></td></ql<>	0.23	9.55	0.35	<ql< td=""><td>33.8</td><td><ql< td=""><td><ql< td=""><td>9.25</td><td>6.43</td><td>7.14</td></ql<></td></ql<></td></ql<>	33.8	<ql< td=""><td><ql< td=""><td>9.25</td><td>6.43</td><td>7.14</td></ql<></td></ql<>	<ql< td=""><td>9.25</td><td>6.43</td><td>7.14</td></ql<>	9.25	6.43	7.14
10-Apr-13	<ql< td=""><td>46.92</td><td><ql< td=""><td>0.22</td><td>8.58</td><td>0.1</td><td><ql< td=""><td>35.6</td><td><ql< td=""><td><ql< td=""><td>8.71</td><td>6.5</td><td>7.28</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	46.92	<ql< td=""><td>0.22</td><td>8.58</td><td>0.1</td><td><ql< td=""><td>35.6</td><td><ql< td=""><td><ql< td=""><td>8.71</td><td>6.5</td><td>7.28</td></ql<></td></ql<></td></ql<></td></ql<>	0.22	8.58	0.1	<ql< td=""><td>35.6</td><td><ql< td=""><td><ql< td=""><td>8.71</td><td>6.5</td><td>7.28</td></ql<></td></ql<></td></ql<>	35.6	<ql< td=""><td><ql< td=""><td>8.71</td><td>6.5</td><td>7.28</td></ql<></td></ql<>	<ql< td=""><td>8.71</td><td>6.5</td><td>7.28</td></ql<>	8.71	6.5	7.28
10-May-13	<ql< td=""><td>1.93</td><td><ql< td=""><td>0.15</td><td>6.98</td><td>0.1</td><td><ql< td=""><td>49.2</td><td><ql< td=""><td><ql< td=""><td>8.04</td><td>6.39</td><td>7.08</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	1.93	<ql< td=""><td>0.15</td><td>6.98</td><td>0.1</td><td><ql< td=""><td>49.2</td><td><ql< td=""><td><ql< td=""><td>8.04</td><td>6.39</td><td>7.08</td></ql<></td></ql<></td></ql<></td></ql<>	0.15	6.98	0.1	<ql< td=""><td>49.2</td><td><ql< td=""><td><ql< td=""><td>8.04</td><td>6.39</td><td>7.08</td></ql<></td></ql<></td></ql<>	49.2	<ql< td=""><td><ql< td=""><td>8.04</td><td>6.39</td><td>7.08</td></ql<></td></ql<>	<ql< td=""><td>8.04</td><td>6.39</td><td>7.08</td></ql<>	8.04	6.39	7.08
10-Jun-13	0.25	0.43	<ql< td=""><td>0.08</td><td>9.28</td><td>0.01</td><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>7.16</td><td>6.19</td><td>6.93</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	0.08	9.28	0.01	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>7.16</td><td>6.19</td><td>6.93</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>7.16</td><td>6.19</td><td>6.93</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>7.16</td><td>6.19</td><td>6.93</td></ql<></td></ql<>	<ql< td=""><td>7.16</td><td>6.19</td><td>6.93</td></ql<>	7.16	6.19	6.93
10-Jul-13	0.82	1.78	<ql< td=""><td>0.15</td><td>8.05</td><td>0.01</td><td><ql< td=""><td>27.7</td><td><ql< td=""><td><ql< td=""><td>7.71</td><td>6.12</td><td>7.01</td></ql<></td></ql<></td></ql<></td></ql<>	0.15	8.05	0.01	<ql< td=""><td>27.7</td><td><ql< td=""><td><ql< td=""><td>7.71</td><td>6.12</td><td>7.01</td></ql<></td></ql<></td></ql<>	27.7	<ql< td=""><td><ql< td=""><td>7.71</td><td>6.12</td><td>7.01</td></ql<></td></ql<>	<ql< td=""><td>7.71</td><td>6.12</td><td>7.01</td></ql<>	7.71	6.12	7.01
10-Aug-13	0.17	0.43	<ql< td=""><td>0.1</td><td>7.53</td><td>0.01</td><td><ql< td=""><td>42.7</td><td>55.4</td><td><ql< td=""><td>7.48</td><td>6.29</td><td>6.91</td></ql<></td></ql<></td></ql<>	0.1	7.53	0.01	<ql< td=""><td>42.7</td><td>55.4</td><td><ql< td=""><td>7.48</td><td>6.29</td><td>6.91</td></ql<></td></ql<>	42.7	55.4	<ql< td=""><td>7.48</td><td>6.29</td><td>6.91</td></ql<>	7.48	6.29	6.91
10-Sep-13	<ql< td=""><td>1</td><td>30</td><td>0.13</td><td>5.41</td><td>0.04</td><td><ql< td=""><td>15.8</td><td>4</td><td><ql< td=""><td>7.74</td><td>6.55</td><td>6.91</td></ql<></td></ql<></td></ql<>	1	30	0.13	5.41	0.04	<ql< td=""><td>15.8</td><td>4</td><td><ql< td=""><td>7.74</td><td>6.55</td><td>6.91</td></ql<></td></ql<>	15.8	4	<ql< td=""><td>7.74</td><td>6.55</td><td>6.91</td></ql<>	7.74	6.55	6.91
10-Oct-13	<ql< td=""><td>0.78</td><td>4</td><td>0.11</td><td>2.5</td><td>0.03</td><td><ql< td=""><td>10</td><td>0.25</td><td><ql< td=""><td>7.22</td><td>6.5</td><td>7.3</td></ql<></td></ql<></td></ql<>	0.78	4	0.11	2.5	0.03	<ql< td=""><td>10</td><td>0.25</td><td><ql< td=""><td>7.22</td><td>6.5</td><td>7.3</td></ql<></td></ql<>	10	0.25	<ql< td=""><td>7.22</td><td>6.5</td><td>7.3</td></ql<>	7.22	6.5	7.3
10-Nov-13	0.19	1.29	2	0.09	7.41	<ql< td=""><td><ql< td=""><td>17.2</td><td><ql< td=""><td><ql< td=""><td>8.77</td><td>6.45</td><td>7.4</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>17.2</td><td><ql< td=""><td><ql< td=""><td>8.77</td><td>6.45</td><td>7.4</td></ql<></td></ql<></td></ql<>	17.2	<ql< td=""><td><ql< td=""><td>8.77</td><td>6.45</td><td>7.4</td></ql<></td></ql<>	<ql< td=""><td>8.77</td><td>6.45</td><td>7.4</td></ql<>	8.77	6.45	7.4
10-Dec-13	<ql< td=""><td>3.48</td><td><ql< td=""><td>0.18</td><td>6.58</td><td>0.03</td><td><ql< td=""><td>15.5</td><td>0.25</td><td>1.73</td><td>7.31</td><td>6.48</td><td>7.51</td></ql<></td></ql<></td></ql<>	3.48	<ql< td=""><td>0.18</td><td>6.58</td><td>0.03</td><td><ql< td=""><td>15.5</td><td>0.25</td><td>1.73</td><td>7.31</td><td>6.48</td><td>7.51</td></ql<></td></ql<>	0.18	6.58	0.03	<ql< td=""><td>15.5</td><td>0.25</td><td>1.73</td><td>7.31</td><td>6.48</td><td>7.51</td></ql<>	15.5	0.25	1.73	7.31	6.48	7.51
10-Jan-14													
10-Feb-14													
10-Mar-14													
10-Apr-14													
10-May-14	3.18	2.5	<ql< td=""><td>0.16</td><td>11.81</td><td>0.05</td><td><ql< td=""><td>45.4</td><td><ql< td=""><td><ql< td=""><td>8.45</td><td>6.53</td><td>7.06</td></ql<></td></ql<></td></ql<></td></ql<>	0.16	11.81	0.05	<ql< td=""><td>45.4</td><td><ql< td=""><td><ql< td=""><td>8.45</td><td>6.53</td><td>7.06</td></ql<></td></ql<></td></ql<>	45.4	<ql< td=""><td><ql< td=""><td>8.45</td><td>6.53</td><td>7.06</td></ql<></td></ql<>	<ql< td=""><td>8.45</td><td>6.53</td><td>7.06</td></ql<>	8.45	6.53	7.06
10-Jun-14	2.16	1.81	<ql< td=""><td>0.13</td><td>9.28</td><td><ql< td=""><td><ql< td=""><td>16.1</td><td><ql< td=""><td><ql< td=""><td>8.18</td><td>6.28</td><td>7.62</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	0.13	9.28	<ql< td=""><td><ql< td=""><td>16.1</td><td><ql< td=""><td><ql< td=""><td>8.18</td><td>6.28</td><td>7.62</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>16.1</td><td><ql< td=""><td><ql< td=""><td>8.18</td><td>6.28</td><td>7.62</td></ql<></td></ql<></td></ql<>	16.1	<ql< td=""><td><ql< td=""><td>8.18</td><td>6.28</td><td>7.62</td></ql<></td></ql<>	<ql< td=""><td>8.18</td><td>6.28</td><td>7.62</td></ql<>	8.18	6.28	7.62
10-Jul-14	0.53	0.79	<ql< td=""><td>0.11</td><td>10.57</td><td>0.01</td><td><ql< td=""><td>15.7</td><td>1</td><td>1.68</td><td>7.34</td><td>6.51</td><td>6.89</td></ql<></td></ql<>	0.11	10.57	0.01	<ql< td=""><td>15.7</td><td>1</td><td>1.68</td><td>7.34</td><td>6.51</td><td>6.89</td></ql<>	15.7	1	1.68	7.34	6.51	6.89
10-Aug-14	1.06	3.53	<ql< td=""><td>0.15</td><td>19.36</td><td>0.02</td><td><ql< td=""><td>11.4</td><td><ql< td=""><td><ql< td=""><td>6.4</td><td>6.41</td><td>6.94</td></ql<></td></ql<></td></ql<></td></ql<>	0.15	19.36	0.02	<ql< td=""><td>11.4</td><td><ql< td=""><td><ql< td=""><td>6.4</td><td>6.41</td><td>6.94</td></ql<></td></ql<></td></ql<>	11.4	<ql< td=""><td><ql< td=""><td>6.4</td><td>6.41</td><td>6.94</td></ql<></td></ql<>	<ql< td=""><td>6.4</td><td>6.41</td><td>6.94</td></ql<>	6.4	6.41	6.94
10-Sep-14	0.21	2.88	<ql< td=""><td>0.1</td><td>4.53</td><td><ql< td=""><td><ql< td=""><td>29</td><td><ql< td=""><td><ql< td=""><td>7.73</td><td>6.47</td><td>7.24</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	0.1	4.53	<ql< td=""><td><ql< td=""><td>29</td><td><ql< td=""><td><ql< td=""><td>7.73</td><td>6.47</td><td>7.24</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>29</td><td><ql< td=""><td><ql< td=""><td>7.73</td><td>6.47</td><td>7.24</td></ql<></td></ql<></td></ql<>	29	<ql< td=""><td><ql< td=""><td>7.73</td><td>6.47</td><td>7.24</td></ql<></td></ql<>	<ql< td=""><td>7.73</td><td>6.47</td><td>7.24</td></ql<>	7.73	6.47	7.24
10-Oct-14	<ql< td=""><td>1.31</td><td><ql< td=""><td>0.07</td><td>2.22</td><td><ql< td=""><td><ql< td=""><td>13.7</td><td><ql< td=""><td><ql< td=""><td>6.73</td><td>6.61</td><td>7.06</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	1.31	<ql< td=""><td>0.07</td><td>2.22</td><td><ql< td=""><td><ql< td=""><td>13.7</td><td><ql< td=""><td><ql< td=""><td>6.73</td><td>6.61</td><td>7.06</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	0.07	2.22	<ql< td=""><td><ql< td=""><td>13.7</td><td><ql< td=""><td><ql< td=""><td>6.73</td><td>6.61</td><td>7.06</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>13.7</td><td><ql< td=""><td><ql< td=""><td>6.73</td><td>6.61</td><td>7.06</td></ql<></td></ql<></td></ql<>	13.7	<ql< td=""><td><ql< td=""><td>6.73</td><td>6.61</td><td>7.06</td></ql<></td></ql<>	<ql< td=""><td>6.73</td><td>6.61</td><td>7.06</td></ql<>	6.73	6.61	7.06
10-Nov-14	0.14	0.95	<ql< td=""><td>0.07</td><td>2.67</td><td><ql< td=""><td><ql< td=""><td>13</td><td><ql< td=""><td><ql< td=""><td>7.98</td><td>6.68</td><td>7.31</td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	0.07	2.67	<ql< td=""><td><ql< td=""><td>13</td><td><ql< td=""><td><ql< td=""><td>7.98</td><td>6.68</td><td>7.31</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>13</td><td><ql< td=""><td><ql< td=""><td>7.98</td><td>6.68</td><td>7.31</td></ql<></td></ql<></td></ql<>	13	<ql< td=""><td><ql< td=""><td>7.98</td><td>6.68</td><td>7.31</td></ql<></td></ql<>	<ql< td=""><td>7.98</td><td>6.68</td><td>7.31</td></ql<>	7.98	6.68	7.31
10-Dec-14	0.75	1.83	<ql< td=""><td>80.0</td><td>4.8</td><td><ql< td=""><td><ql< td=""><td>22.65</td><td>19.44</td><td><ql< td=""><td>8.72</td><td>6.76</td><td>7.43</td></ql<></td></ql<></td></ql<></td></ql<>	80.0	4.8	<ql< td=""><td><ql< td=""><td>22.65</td><td>19.44</td><td><ql< td=""><td>8.72</td><td>6.76</td><td>7.43</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>22.65</td><td>19.44</td><td><ql< td=""><td>8.72</td><td>6.76</td><td>7.43</td></ql<></td></ql<>	22.65	19.44	<ql< td=""><td>8.72</td><td>6.76</td><td>7.43</td></ql<>	8.72	6.76	7.43
Permit Limit	6.0	5.0	400	0.3	103	2.0	0.1	190	126	8.0	5.0	6.0	9.0
AVERAGE	1.00	3.16	19.12	0.14	7.56	0.09	0.00	24.44	8.45	1.70	7.57	** see n	ote below
Percentage of													_
Limit	16.72	63.14	4.78	48.02	7.34	4.55	NA	12.87	6.70	21.28	48.56		
				İ									
Baseline													
Monitoring Freq.	1/Week	1/Week	1/Month	1/Month	1/Month	1/Week	1/Week	1/Month	1/Week»	1/Week	1/Day	1/Day	1/Day
2015 Proposed				İ							,	,	-
Freq.	1/ Month^	1/Week	1/6 months	1/3 Months	1/Month***	1/2 Months	1/Month∞	1/6 Months	1/Week	1/2 months	3/Week~	1/Day	1/Day

The DMR data from January - April 2015 has been omitted from this evaluation. During the time the plant experienced an upset due to the presence of freshwater snails in the treatment plant in large numbers. DEQ agreed to disregard the effluent data reported during this period for the purpose of the reduced monitoring evaluation due to the extraordinary circumstance.

- ^ Based on performance, BOD monitoring frequency would be eligible to a reduction of 1 / 2 Months. However, because BOD is an operational parameter, monitoring frequency is reduced to 1/Month based on PWJ.
- *** TN year-to-date applied per GM 07-2008 Amendment 2. Reduced frequency not available
- ** Reduced monitoring for pH considered on a case by case basis. Per the 2014 VPDES permit manual, reduced monitoring of pH is not granted where min or max pHs fall within 0.5 units of the permit limits. Throughout the last three years the minimum pH has fallen within 0.5 units of the 6.00 SU limit (highlighted in red) on many occasions. For this reason a reduction in the monitoring frequency for pH is not recommended.
- » E. coli monitoring frequency will remain at 1/Week due to UV disinfection system replacing chlorination in 2010.

Frequency in accordance with section IN-2 of 2014 VPDES permit manual

- ∞ Reduced monitoring frequency for settleable solids is based on permit writer judgment due to all results being reported as <QL.
- ~ Reduced monitoring frequency for DO eligible on PWJ as the facility does not provide active aeration; formula applied for reduced frequency as follows: (1-((DO avg DO limit)/DO limit)*100

Attachment M: Owner Comments and DEQ Response to Comments

Document/ Page	Language	Comment	DEQ Responses
Stormwater	Bacteria monitoring.	How is the engineering study insufficient?	The engineering study states that in Area 7 "stormwater is directed toward BMP-14 where it is treated prior to discharge to surface water. BMP-14 was constructed to manage potential incidental contact with fecal residue that might occur as delivery trucks are moved through the area." Consequently, there is potential for bacteria contributions to stormwater from the facility operations. A reduced monitoring frequency of 1/6 months will be assigned in recognition of minimal potential for contact. If bacteria concentrations in excess of the benchmark are measured, updates to the SWPPP may address source isolation sampling and existing BMPs in place to minimize potential for contact with the industrial operation.
Fact sheet page 6 of 25	"As was the case during the 2010 evaluation, statistical evaluation of both species test end points resulted in limitation recommendations based on chronic toxicity." Guidance Memo 00-2012, data evaluation, and permit writer judgment.	We need to better understand the rationale for the new WET limitations	As promised, I verified with Deborah DeBiasi that a limitation is appropriate for the reissuance. Additional data was provided by Tim Lockhart and used in the evaluation. Consequently, the limitation has been revised from 1.38 TUc to 1.12 TUc. As indicated in the permit, we are providing a 4 year schedule of compliance to allow for the operational and potential capital upgrades needed. While we discussed the option for Tyson to request a modification prior to the close of the compliance schedule in order to remove the limitation, in the absence of a conclusive argument that the existing data is no longer representative, the need for a limitation is not likely to change.
Permit Section I, Table	720 – Toxicity	We need to better understand the rationale for the toxicity limitation expressed.	As explained, the toxicity limitation is based on reasonable potential for the effluent to cause toxicity to aquatic life. Because in stream mixing is not available, any toxicity observed in the effluent triggers the need for a limitation. Toxicity was observed in 4 separate sampling events.
Fact Sheet Page 8 of 25	Hydrogen Sulfide – Annual monitoring only	Sampling is not warranted or required. Results submitted March 15, 2015, show non-detect concentrations for total sulfide.	We have received documentation of sample collection errors for the initial results indicating the presence of H2S. Consequently, we have omitted the data and further sampling under the permit is not required.
VPDES Permit, p. 22 of 24, 15 and Sec. D	Hydrogen Sulfides Minimization Plan	Need to understand the rationale for inclusion.	In accordance with the response above, this condition has been removed.

Summary of Owner Comments and DEQ Response to Comments – Conference Call July 2015

Fact Sheet Page 6 of 25, Permit Part I(D)?	145 – Chlorides	Need to understand the rationale for inclusion of testing based on the worksheet model for toxicity.	While the reasonable potential analysis triggers a limitation, DEQ recognizes that a limitation may not be necessary with a larger data set. The existing data is well below the WLA. Consequently, monthly monitoring will be required over the course of the permit term and reasonable potential will be evaluated at the next reissuance.
VPDES Permit, Part I	002 – pH 1/day 007 – DO 1/day	Why are these not 1/week as with similar analytes (see 004 TSS)	These are operational parameters and it is standard practice to require a baseline of 1/day monitoring frequency.
VPDES Permit, p. 22 of 24, Sec. D	Schedule of Compliance for Chlorides and WET	Need to understand the rationale for inclusion.	Chlorides will be removed from the Compliance Schedule. The schedule will be retained for the WET limitation to allow the facility time to make any operational changes or capital upgrades needed to comply with the limitation.
	012 – TP limits 794 – TP limits	Need rationale for expressions of TP as written	As explained during the conference call, and further in the FS, each of the TP limits is required by regulation. Although the loading limitation in the IP is equal to the Nutrient Trading GP loading, the GP is not protective of the Chickahominy TMDL, on which the IP limitation is based. Because the Nutrient GP allows for trading, a firm limitation is included in the IP to protect the Chickahominy TMDL.
	071 – Settleable Solids	This plant has a tertiary filter and the limitation should be removed or at least reduced to quarterly.	As discussed, the monitoring frequency has been adjusted to once per month for Settleable Solids.
VPDES Permit, Part I, Sec. 7	Compliance Reporting	Verify that if the level is below QL, then report a zero or "QL." See page 20, 7(c).	As stated in the permit, "All concentration data below the QL used for the analysis shall be treated as zero."
VPDES Permit, Part I, Sec. 13	Effluent Monitoring Frequencies	Baseline monitoring with no reversion possible for permit term?	This is a standard condition that is applied consistently when the privilege of reduced monitoring is granted in the permit. The condition requires that if an NOV is issued for any of the parameters, all monitoring frequencies revert to baseline until the evaluation is conducted again at permit reissuance. At your request, we have revisited the baseline frequencies and made adjustments consistent with previous permits.
		Define "grab" or "in situ" samples	Michael Terry coordinated with the Compliance Manager in the Piedmont Regional Office and she resolved his concerns. Grab samples will be required in the permit
Fact Sheet, Page 6 of 25	Zinc	Need to understand the rationale for inclusion.	Reasonable potential was demonstrated in the evaluation presented in the FS.

Summary of Owner Comments and DEQ Response to Comments – Conference Call July 2015

Fact Sheet, Page 8 of 25	Chlorine (TRC)		While chlorine is not used as a disinfection method at the facility, a TRC special condition is included to allow for emergency needs for chlorine disinfection. The condition has been revised to remove the TRC residual requirements within the contact tank.
Fact Sheet, Page 8 of 25	Design Flow	1.07 MGD design flow vs. 1.25 MGD	This reference has been removed from the FS.

July 20, 2015

Ms. Emilee Adamson Virginia Department of Environmental Quality Piedmont Regional Office 4949-A Cox Road Glen Allen, Virginia 23060

Re: Requested information from the subject facility:

Tyson Glen Allen Plant VPDES Permit No. VA0004031

Dear Ms. Adamson,

Tyson greatly appreciates your time and consideration during pre-draft reviews of the above referenced permit. Following the conference call on July 20, 2015 please accept the following information in response to inquiries concerning 1) name change on Permit, 2) rationale to exclude Hydrogen Sulfide as a permit parameter, and 3) rationale to reduced monitoring for Dissolved Oxygen.

1) Owner Name:

The official owner & facility name is: Tyson Farms, Inc.

2) Elimination of Hydrogen Sulfide as permit reissuance parameter:

As was discussed on the conference call, the 2010 sample submission was collected at the wastewater facility employees not familiar with protocols associated with sampling for such sensitive parameters. Tyson requested DEQ to allow for additional samples to be performed by qualified 3rd party agents. The result of the additional testing indicated non-detection of any dissolved hydrogen sulfide. In addition, the current wastewater process, chemical program, waste activated sludge handling, equipment and management thereof has changed significantly since 2010.

3) Reduced Dissolved Oxygen monitoring:

The decision to not allow a reduced dissolved oxygen monitoring schedule may have been based on the presence of a non-passive post aeration system listed in the DEQ's documentation. This was the case in June 2010 at the time of the permit application submittal, however in December 2010 the installation of the UV disinfection system was completed along with other system changes eliminating the need and use of non-passive post aeration system.

If you have any questions or require additional information please contact me at 798.8357 ext 305 or at tim.lockhart@tyson.com

Sincerely,

TYSON FOODS, INC.

Tim Lockhart

Environmental, Health & Safety Mgr.

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY PIEDMONT REGIONAL OFFICE

Molly Joseph Ward Secretary of Natural Resources 4949-A Cox Road, Glen Allen, Virginia 23060 (804) 527-5020 Fax (804) 527-5106 www.deq.virginia.gov

David K. Paylor Director

Michael P. Murphy Regional Director

June 29, 2015

Mr. Dale Mullen McGuire Woods LLP 901 East Cary Street Richmond, VA 23219-4030

Re: Tyson Farms, Inc. Glen Allen Plant Draft Permit # VA0004031

Dear Mr. Mullen,

The Department of Environmental Quality (the Department) has received your letter dated April 22, 2015 and the subsequent engineering analysis received June 19, 2015, for the subject facility, and provides the following comments:

- 1. As discussed during the October 1, 2015 meeting with the facility, Department staff has performed a monitoring frequency reduction analysis for all parameters. Please see Attachment L of the fact sheet for the calculations of the final monitoring frequencies that will be included in the Permit, and the respective rationales. Please note that data reported in the DMRs from January to April, 2014 were not included in the analysis following explanation that the facility had experienced an upset due to the presence of freshwater snails in the treatment plant.
- 2. The Department has reevaluated the monitoring requirements for *E.coli* at Outfall 001. With a baseline monitoring frequency of 5 days per week, as recommended by GM14-2003 for a plant with a design capacity of 1.25 MGD and a maximum 30-day average flow of 1.0 MGD, the Department has calculated a monitoring frequency of 1 per week for the 2015 permit.
- 3. The additional two sampling data provided in the March 25, 2015 report were incorporated in the Reasonable Potential Analyses (RPA) for cadmium, selenium, zinc, and chloride. The analyses results show that no limitation is required for cadmium, selenium and zinc. The RPA for chloride shows the need for a limitation based on chronic toxicity. Because this is a new limitation, a four-year schedule of compliance will be included in the permit. Despite the RPA for zinc showed no limitations needed for zinc, the 2005 limitation will be carried forward to the 2015 permit to avoid non compliance with antibacksliding regulation.
- 4. The Department is willing to eliminate the hydrogen sulfide special condition from the draft permit. However, annual monitoring for dissolved sulfide will be required in the permit unless the permittee can provide a justification of why the initial concentration of 400 ug/L is no longer representative of the effluent. Please note that any further monitoring would be required in the permit and will not be allowed prior to reissuance.

- 5. The permittee expressed concern that the TMP Data Evaluation dated December 1, 2010, from which the new chronic toxicity limit was derived, was out of date and utilized data that was no longer representative of the facility's effluent quality. DEQ agreed to rerun the statistical analysis on the toxicity data using more recent data. All data that was available from 2009 to present was compiled and utilized for the updated evaluation. As was the case during the 2010 evaluation, statistical evaluation of both species test end points resulted in limitation recommendations based on chronic toxicity. In accordance with Guidance Memo 00-2012, data evaluation, and permit writer judgment, it was determined that: 1) the facility continue conducting quarterly chronic toxicity tests (Chronic 3-Brood Static Renewal Survival and Reproduction Test using *C. dubia* until the WET limit is effective and 2) a new WET limitation of NOEC = 72% and TUC = 1.38 be established for *C. dubia* with a 4 year compliance schedule. Also please note that because the facility has to comply with a WET limit, monitoring frequency reduction is not allowed, and therefore no language for frequency reduction will be included in the permit.
- 6. The Department believes that the concentration units for total nitrogen and total phosphorus as reported in Part I.A of the draft permit are consistent with the reporting requirements. The daily maximum units for total phosphorus and total nitrogen are expressed in kg/year versus kg/day because the facility has Total Nitrogen and Total Phosphorus calendar year load limits associated with Outfall 001 as included in the 2012 Registration List, under registration number VAN040089 (see footnote 9 in Part I.A of the permit). The calendar year load limit for total phosphorus in the permit has been converted from lbs/year to kg/year. Please refer to special conditions I.C.12 and I.C.13 for nutrients reporting requirements. While it may seem confusing initially, the inclusion of several different nutrient reporting parameters (i.e. annual average, year-to-date average, etc.) is necessary to meet the regulatory requirements of 9VAC25-40-70 and 9VAC25-31-220.L. This presentation is consistent in all permits discharging to the Chesapeake Bay.
- 7. The Department has reviewed the Stormwater Flow Evaluation Report dated June 10, 2015, and provides the following comments:
 - a. Figure 1 shows the presence of a basin named BMP-4. Please provide a description of the functionality of the basin in relation to the stormwater flows that it receives from the several SWM areas on site, and in relation to the bioretention cell BMP-14.
 - b. Based on the report and maps provided, it is unclear where the treated process wastewater and the stormwater flow collected by the drainage channel are discharged. Our records indicate that the point of compliance for Outfall 002 (stormwater) is prior to the point at which the wastewater treatment plant effluent and the stormwater mix. Hence, the stormwater samples are not comingled with treated process wastewaters. Please provide a description and the locations of the points of discharge for both Outfall 001 and 002.
 - c. The stormwater report mentions that the stormwater runoff comes in contact with unprocessed product in only two drainage areas (area 2 and area 7), and that in both cases stormwater is treated, by the wastewater treatment plant (area 2) or bioretention cell (BMP-14, area 7) prior to being piped to the WWTP. However, the report also mentions that part of the stormwater that is directed to BMP-14 is then directly discharged to surface waters. In addition, the Department has some reservations with respect to the conclusion that only area 2 and area 7 have the potential of direct contact with bacteria; specifically, it appears that area 5, described as a service center with fueling and washing activities, may have the potential to carry bacteria.

Unless the permittee is able to demonstrate that: 1) no stormwater runoff that has been in contact with unprocessed product or incidental chicken waste from transport activities is directly discharged to surface waters; 2) the washing and rinsing activities in area 5 do not have the potential for stormwater to come in contact with livestock bacteria; the

VPDES Permit No. VA0004031 Page 3 of 3

Department believes that continued monitoring for *E. Coli* in the stormwater at Outfall 002 is appropriate.

Given the limited potential for contact with bacteria from the process activities, we are willing to reduce the bacteria monitoring from once per quarter to semiannual.

Please provide a response to the comments above within 14 days of receipt of this letter. Should you have any questions regarding any of the comments above, please contact me at 804-527-5095, or laura.galli@deq.virginia.gov.

Sincerely,

Laura Galli

VPDES Permit Writer

Enclosures: revised permit, fact sheet, and fact sheet attachments

Cc: Tim Lockhart – Tyson Foods

McGuireWoods LLP 901 East Cary Street Richmond, Virginia 23219-4030 Phone: 804.775.1000 www.mcguirewoods.com

> Darin K. Waylett Direct: 804.775.1101

McGUIREWOODS

dwaylett@mcguirewoods.com Direct Fax: 804.225-4510

April 22, 2015

Laura Galli VPDES Permit Writer Virginia Department of Environmental Quality Piedmont Regional Office 4949-A Cox Road Glen Allen, VA 23060

Re: Tyson Farms, Inc. Glen Allen Plant Draft Permit # VA0004031

Dear Laura:

In response to your email of April 2, 2015, we offer the following details regarding the draft permit, similar to the conversations we had at our October meeting.

DEQ has indicated a willingness to evaluate the monitoring frequency requirements for a number of parameters. These generally fall into two categories. The first are parameters where the monitoring frequency was based, in part, on data collected during upset conditions at the plant due to the presence of freshwater snails. This includes TSS and BOD which had elevated levels during the upset, which ran from approximately January 2014 through April 2014.

The second category was parameters which had an extremely limited number of samples, some of which included limits of detection that were too high for the parameter. In support of lowering the sampling, or eliminating the limit altogether, we submitted the additional data you received a few weeks ago for total sulfides, chlorides, selenium, cadmium and zinc.

Tyson also feels that the Hydrogen Sulfide Minimization Plan in the current draft is unnecessary. The recent data provided to DEQ reflects no detectable levels of total sulfides in the plant's wastewater. However, if the Department feels it is necessary, Tyson can conduct additional analyses specific to Hydrogen Sulfide to support removal of this permit condition.

As noted previously, we would like to reduce or eliminate the monitoring requirement for E. coli and fecal coliform at Outfall 2. The current data at the storm water outfall show fecal coliform above the screening value of 28 N/cmL, with results ranging up to 1,600 N/cmL. It is our opinion that the source of the fecal coliform is natural given the wildlife present in the stormwater retention pond and outfall stream. Our basis for this is that (1) there is no indication of significant levels of fecal coliform or E. coli in the process water at Outfall 1, and (2) there is no other potential source of these contaminants on site. We will support this through an engineering review of plant operations. The storm water drainage map (Attachment J to the Fact Sheet) shows that 40% of the plant area, including all of the parking surfaces where birds

Laura Galli April 22, 2015 Page 2

are temporarily stored before being processed, drain not to the stormwater outfall, but instead are captured and fed into the wastewater treatment system on site. Thus, the engineering review will show that any fecal coliform or E. coli present at the stormwater outfall are the result of wildlife at the rural facility. Given this, Tyson does not feel that the monitoring requirements at Outfall 2 are necessary or appropriate. We expect that engineering analysis will be available for submission to the Department not later than Friday, May 8, 2015.

We would also like to reduce the monitoring requirements for E. coli at Outfall 1. The current increased frequency for monitoring based on the conversion to UV disinfection appears to be overly burdensome. The frequency appears to be based, in part, on the design flow of the plant, which is roughly 1.25 MGD. However, average flows at the plant are significantly lower, running at roughly 0.7-0.75 MGD on average. In addition, several systems are in place to ensure that the UV system provides the necessary disinfection, including a back-up bank of UV lights, and mandatory shut-down of operations should the UV system fail.

The current draft permit also includes additional chlorine limitations. While Tyson does not object to having the limits, should use of chlorine for disinfection on an emergency basis be necessary, we would request a slight change to the wording in this section to clarify that it would only apply during such intermittent use. The first sentence should read "If chlorine is used as a disinfection method (instead of ultraviolet), TRC shall be limited and monitored by the permittee as specified below from the time of initial utilization and continued until termination of use plus 7 days:"

Tyson also questions the necessity of the new requirement for toxicity testing in the draft permit. Our evaluation of the WET testing data shows that a single outlier data point from January of 2007 may be driving this requirement. Tyson believes that evaluation of the newer WET testing data from 2009 to present will show that the data from January 2007 is an outlier as all more recent testing showed 100% survival and good reproduction. In addition, Tyson would like to discuss the possibility of future reductions in WET testing frequency should the data continue to show little to no toxicity. For instance, Tyson has provisions in similar permits which reduce WET testing to an annual basis if four straight quarters show no lethal or sublethal effects.

Tyson also asks that DEQ utilize simplified (consistent units) limits for Nitrogen and Phosphorus in the revised permit. The draft permit includes multiple expressions of permit limits for these parameters, which may result in confusion when determining the appropriate sampling times and reporting of results.

This is merely a summary of the issues we have identified to date. We would like to reserve the opportunity to review and comment on subsequent draft documents before a subsequent draft is issued for public notice, we ask that we be allowed to discuss these points with you at an early opportunity. We expect that engineering analysis regarding stormwater, and additional WET testing will be available for submission to the Department not later than Friday, May 8, 2015.

Laura Galli April 22, 2015 Page 3

I can be reached at 804.775.1101 (Direct), or my partner Dale Mullen can be reached at 804.775.4710 (Direct).

Sincerely,

Darin K. Waylett

U

CC: Kyle Winter
Dale Mullen
Timothy Jones

Michael Terry
Timothy Lockhart